Using JFET and MESFET Model Statements

Syntax

.MODEL mname NJF <LEVEL = val> <pname1 = val1> ...

.MODEL mname PJF <LEVEL = val> <pname1 = val1> ...

mname

Model name. Elements refer to the model by this name.

NJF

Identifies an N-channel JFET or MESFET model

LEVEL

The LEVEL parameter selects different DC model equations.

pname1=val1

Each JFET or MESFET model can include several model parameters.

PJF

Identifies a P-channel JFET or MESFET model

JFET and MESFET Model Parameters

DC characteristics are defined by the model parameters VTO and BETA. These parameters determine the variation of drain current with gate voltage. LAMBDA determines the output conductance, and IS, the saturation current, of the two gate junctions. Two ohmic resistances, RD and RS, are included. The charge storage is modeled by nonlinear depletion-layer capacitances for both gate junctions that vary as the -M power of junction voltage, and are defined by the parameters CGS, CGD, and PB.

Use parameters KF and AF to model noise, which is also a function of the series source and drain resistances (RS and RD), in addition to temperature. Use the parameters ALPHA and A to model MESFETs.

The AREA model parameter is common to both the element and model parameters. The AREA element parameter always overrides the AREA model parameter.

Table 17-3: JFET and MESFET Model Parameters

Model Parameters Common to All Levels

Geometric

ACM, ALIGN, AREA, HDIF, L, LDEL, LDIF, RD, RG, RS, RSH, RSHG, RSHL, W, WDEL

Capacitance

CAPOP, CGD, CGS, FC, M, PB, TT

Subthreshold

ND, NG

Noise

AF, KF

LEVEL=1 Model Parameters (JFET)

DC

BETA, IS, LAMBDA, N, VTO

LEVEL=2 Model Parameters (JFET)

DC

BETA, IS, LAMBDA, LAM1, N, VTO

LEVEL=3 Model Parameters (MESFET)

DC

ALPHA, BETA, D, GAMDS, IS, N, K1, LAMBDA, NCHAN, SAT, SATEXP, UCRIT, VBI, VGEXP, VP, VTO

The following subsections provide information about:

Gate Diode DC Parameters

Name (Alias)

Units

Default

Description

ACM

 

 

Area calculation method. This parameter allows the selection between the old SPICE unitless gate area calculations and the new Star-Hspice area calculations (see the ACM section). If W and L are specified, AREA becomes:
ACM=0 AREA=Weff/Leff
ACM=1 AREA=Weff · Leff

ALIGN

m

0

Misalignment of gate

AREA

 

 

Default area multiplier. This parameter affects the BETA, RD, RS, IS, CGS, and CGD model parameters.
AREAeff=M · AREA
Override this parameter using the element effective area.

HDIF

m

0

Distance of the heavily diffused or low resistance region from source or drain contact to lightly doped region

IS

amp

1.0e-14

Gate junction saturation current
ISeff = IS · AREAeff

L

m

0.0

Default length of FET. Override this parameter using the element L.
Leff = L · SCALM + LDELeff

LDEL

m

0.0

Difference between drawn and actual or optical device length
LDELeff = LDEL · SCALM

LDIF

m

0

Distance of the lightly doped region from heavily doped region to transistor edge

N

 

1.0

Emission coefficient for gate-drain and gate-source diodes

RD

ohm

0.0

Drain ohmic resistance (see the ACM section)
RDeff = RD /AREAeff, ACM=0

RG

ohm

0.0

Gate resistance (see the ACM section)
RGeff = RG · AREAeff, ACM=0

RS

ohm

0.0

Source ohmic resistance (see the ACM section)
RSeff = RS /AREAeff, ACM=0

RSH

ohm/sq

0

Heavily doped region, sheet resistance

RSHG

ohm/sq

0

Gate sheet resistance

RSHL

ohm/sq

0

Lightly doped region, sheet resistance

W

m

0.0

Default width of FET. Override this parameter using the element W.
Weff = W · SCALM + WDELeff

WDEL

m

0.0

Difference between drawn and actual or optical device width
WDELeff = WDEL · SCALM

Gate Capacitance LEVEL 1, 2, and 3 Parameters

Name (Alias)

Units

Default

Description

CAPOP

 

0.0

Capacitor model selector:

CAPOP=0 - default capacitance equation based on diode depletion layer

CAPOP=1 - symmetric capacitance equations (Statz)

CAPOP=2 - Avant! improvement to CAPOP=1

CALPHA

ALPHA

 

Saturation factor for capacitance model (CAPOP=2 only)

CAPDS

F

0

Drain to source capacitance for TriQuint model
CAPDSeff=CAPDS ·

CGAMDS

GAMDS

 

Threshold lowering factor for capacitance (CAPOP=2 only)

CGD

F

0.0

Zero-bias gate-drain junction capacitance
CGDeff = CGD · AREAeff
Override this parameter by specifying GCAP.

CGS

F

0.0

Zero-bias gate-source junction capacitance
CGSeff = CGS · AREAeff
Override this parameter by specifying GCAP

CRAT

 

0.666

Source fraction of gate capacitance (used with GCAP)

GCAP

F

 

Zero-bias gate capacitance. If specified,
CGSeff = GCAP · CRAT · AREAeff and
CGDeff = GCAP · (1-CRAT) · AREAeff

FC

 

0.5

Coefficient for forward-bias depletion capacitance formulas (CAPOP=0 and 2 only)

CVTO

VTO

 

Threshold voltage for capacitance model (CAPOP=2 only)

M (MJ)

 

0.50

Grading coefficient for gate-drain and gate-source diodes (CAPOP=0 and 2 only)
0.50 - step junction
0.33 - linear graded junction

PB

V

0.8

Gate junction potential

TT

s

0

Transit time
- option METHOD=GEAR is recommended when using transit time for JFET and MESFET


NOTE: Many DC parameters (such as VTO, GAMDS, ALPHA) can also affect capacitance.

DC Model LEVEL 1 Parameters

Name (Alias)

Units

Default

Description

LEVEL

 

1.0

LEVEL=1 invokes SPICE JFET model

BETA

amp/ V 2

1.0e-4

Transconductance parameter, gain

 

LAMBDA

1/V

0.0

Channel length modulation parameter

ND

1/V

0.0

Drain subthreshold factor (typical value=1)

NG

 

0.0

Gate subthreshold factor (typical value=1)

VTO

V

-2.0

Threshold voltage. If set, it overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

DC Model LEVEL 2 Parameters

Name (Alias)

Units

Default

Description

LEVEL

 

1.0

Level of FET DC model. LEVEL=2 is based on modifications to the SPICE model for gate modulation of LAMBDA.

BETA

amp /V 2

1.0e-4

Transconductance parameter, gain

 

LAMBDA

1/V

0.0

Channel length modulation parameter

LAM1

1/V

0.0

Channel length modulation gate voltage parameter

ND

1/V

0.0

Drain subthreshold factor (typical value=1)

NG

 

0.0

Gate subthreshold factor (typical value=1)

VTO

V

-2.0

Threshold voltage. When set, VTO overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

DC Model LEVEL 3 Parameters

Name (Alias)

Units

Default

Description

LEVEL

 

1.0

Level of FET DC model. LEVEL=3 is the Curtice MESFET model.

A

m

0.5µ

Active layer thickness

Aeff = A · SCALM

ALPHA

1/V

2.0

Saturation factor

BETA

amp /V 2

1.0e-4

Transconductance parameter, gain

 

 

D

 

11.7

Semiconductor dielectric constant: Si=11.7, GaAs=10.9

DELTA

 

0

Ids feedback parameter of TriQuint model

GAMDS (GAMMA )

 

0

Drain voltage, induced threshold voltage lowering coefficient

LAMBDA

1/V

0.0

Channel length modulation parameter

K1

V 1/2

0.0

Threshold voltage sensitivity to bulk node

NCHAN

atom/cm 3

1.552e16

Effective dopant concentration in the channel

ND

1/V

0.0

Drain subthreshold factor

NG

 

0.0

Gate subthreshold factor (typical value=1)

SAT

 

0.0

Saturation factor

SAT=0 (standard Curtice model)

SAT= (Curtice model with hyperbolic tangent coefficient)

SAT=2 (cubic approximation of Curtice model (Statz))

SATEXP

 

3

Drain voltage exponent

UCRIT

V/cm

0

Critical field for mobility degradation

VBI

 

1.0

Gate diode built-in voltage

VGEXP (Q)

 

2.0

Gate voltage exponent

VP

 

 

Dinch-off voltage (default is calculated)

VTO

V

-2.0

Threshold voltage. If set, it overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

ACM (Area Calculation Method) Parameter Equations

The JFET model parameter ACM lets you select between the SPICE unitless gate area calculations and the Star-Hspice area calculations. The ACM=0 method (SPICE) uses the ratio of W/L to keep AREA unitless. The ACM=1 model (Star-Hspice) requires parameters such as IS, CGS, CGD, and BETA to have proper physics-based units.

In the following equations, lower case "m" indicates the element multiplier.

ACM=0

 

 

 

 

ACM=1

 

 

Or if RD=0,

 

 

or if RG=0,

 

 

or if RS=0,

 

Resulting calculations

 

 

 

 


NOTE: The model parameter units for IS, CGS, CGD, are unitless in ACM=0 and per square meter for ACM=1.
Example

j1 10 20 0 40 nj_acm0 w=10u l=1u

j2a 10 20 0 41 nj_acm1 w=10u l=1u


.model nj_acm0 njf LEVEL=3 capop=1 sat=3 acm=0

+ is=1e-14 cgs=1e-15 cgd=.3e-15
$$$ note different units for is,cgs,cgd

+ rs=100 rd=100 rg=5 beta=5e-4

+ vto=.3 n=1 ng=1.4 nd=1

+ k1=.2 vgexp=2 alpha=4 ucrit=1e-4 lambda=.1
+ satexp=2

+ eg=1.5 gap1=5e-4 gap2=200 d=13


.model nj_acm1 njf LEVEL=3 capop=1 sat=3 acm=1

+ is=1e-2 cgs=1e-3 cgd=.3e-3
$$$ note different units for is,cgs,cgd

+ rs=100 rd=100 rg=5 beta=5e-4

+ vto=.3 n=1 ng=1.4 nd=1

+ k1=.2 vgexp=2 alpha=4 ucrit=1e-4 lambda=.1
+ satexp=2

+ eg=1.5 gap1=5e-4 gap2=200 d=13

JFET and MESFET Capacitances

Gate Capacitance CAPOP=0

The DCAP option switch selects the diode forward bias capacitance equation:

DCAP=1

Reverse Bias:

vgd < FC · PB

 

vgs < FC · PB

 

Forward Bias:

 

 

 

 

DCAP=2 (Star-Hspice Default)

Reverse Bias:

vgd < 0

 

vgs < 0

 

Forward Bias:

 

 

 

 

DCAP=3

Limits peak depletion capacitance to FC · CGDeff or FC · CGSeff, with proper fall-off when forward bias exceeds PB (FC > 1).

Gate Capacitance CAPOP=1

Gate capacitance CAPOP=1 is a charge conserving symmetric capacitor model most often used for MESFET model LEVEL 3.

 

 

 

 

where:

 

 

and:

 

CGD = High -vds Cgd at vgs = 0

CGS = High -vds Cgs at vgs = 0

CGD - CGDeff

CGS - CGSeff

Gate Capacitance CAPOP=2

The Statz capacitance equations (See H. Statz, P.Newman, I.W.Smith, R.A. Pucel, and H.A. Haus, GaAs FET Device and Circuit Simulation in Spice) (CAPOP=1) contain mathematical behavior that has been found to be problematic when trying to fit data.

The CAPOP=2 capacitance equations help to solve the problems described above.

CAPOP=2 Parameters

Parameter

Default

Description

CALPHA

ALPHA

Saturation factor for capacitance model

CGAMDS

GAMDS

Threshold lowering factor for capacitance

CVTO

VTO

Threshold voltage for capacitance model

FC

0.5

PB multiplier - typical value 0.9 gate diode limiting voltage=FC · PB.

M (MJ)

0.5

Junction grading coefficient

VDEL

0.2

Transition width for Vgs

Capacitance Comparison (CAPOP=1 and CAPOP=2)

CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vgs for Vds=0, 1, 2, 3, 4 and CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vds for Vgs=-1.5, -1.0, -0.5, 0 show comparisons of CAPOP=1 and CAPOP=2. Note in CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vgs for Vds=0, 1, 2, 3, 4 that below threshold (-0.6 v) Cgs for CAPOP=2 drops towards the same value as Cgd, while for CAPOP=1, CGS --> 0.

Note in CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vds for Vgs=-1.5, -1.0, -0.5, 0 how the Cgs-Cgd characteristic curve "flips over" below threshold for CAPOP=1, whereas for CAPOP=2, it is well-behaved.

 

Figure 17-5: CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vgs for Vds=0, 1, 2, 3, 4

 

Figure 17-6: CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vds for Vgs=-1.5, -1.0, -0.5, 0

JFET and MESFET DC Equations

DC Model Level 1

JFET DC characteristics are represented by the nonlinear current source, ids. The value of ids is determined by the equations:

 

vgst< 0 Channel pinched off

 

0<vgst<vds Saturated region

 

0<vds<vgst Linear region

 

The drain current at zero vgs bias (ids) is related to VTO and BETA by the equation:

 

At a given vgs, LAMBDA can be determined from a pair of drain current and drain voltage points measured in the saturation region where vgst<vds:

 

DC Model LEVEL 2

The DC characteristics of the JFET LEVEL 2 model are represented by the nonlinear current source (ids). The value of ids is determined by the equations:

 

vgst<0 Channel pinched off

 

Saturated region, forward bias

 

0<vgst<vds, vgs<0 Saturated region, reverse bias

 

0<vds<vgst Linear region

 

DC Model LEVEL 3

The DC characteristics of the MESFET LEVEL 3 model are represented by the nonlinear hyperbolic tangent current source (ids). The value of ids is determined by the equations:

vds>0 Forward region

If model parameters VP and VTO are not specified they are calculated as:

 

 

then,

 

 

vgst<0 Channel pinched off

 

vgst>0, SAT=0 On region

 

vgst>0, SAT=1 On region

 

 

vgst>0, SAT=2, vds<3/ALPHA On region

 

 

vgst>0, SAT=2, vds>3/ALPHA On region

 

 

If vgst >0, SAT=3 is the same as SAT=2, except exponent 3 and denominator 3 are parameterized as SATEXP, and exponent 2 of vgst is parameterized as VGEXP.


NOTE: idsubthreshold is a special function that calculates the subthreshold currents given the model parameters N0 and ND.
Star-Hspice Manual - Release 2001.2 - June 2001