LEVEL 8 HiCUM Model
What is the HiCUM Model?
HiCUM is an advanced transistor model for bipolar transistors, with a primary emphasis on circuit design for high-speed/high-frequency applications. HiCUM development was spurred by the SPICE Gummel-Poon model's (SGPM) inadequate level of accuracy for high-speed large-signal transient applications and the required high-collector current densities. Other major disadvantages of the SGPM are:
-
A lack of sufficient physical background
-
Poor descriptions of base resistance and junction capacitances in the regions of interest
-
Inadequate description of both Si- and III-V material-based HBTs
The HiCUM model is implemented with LEVEL 8 in Hspice.
HiCUM Model Advantages
Major features of HiCUM are:
-
Accurate description of the high-current operating region (including quasi-saturation and saturation).
-
Distributed modelling of external base-collector region.
-
Proper handling of emitter periphery injection and charge storage .
-
Internal base resistance as a function of operating point (conductivity modulation and emitter current crowding), and emitter geometry.
-
Sufficiently physical model equations allowing predictions of temperature and process variations, as well as scalability, even at high current densities.
-
Parasitic capacitances, independent on operating point, are available in the equivalent circuit, representing base-emitter and base-collector oxide overlaps, that become significant for small-size transistors.
-
Weak avalanche breakdown is available.
-
Self-heating effects are included. Non-quasi-static effects, resulting in a delay of collector current AND stored minority charge, are modelled as function of bias.
-
Collector current spreading is included in minority charge and collector current formulation.
-
Extensions for graded-base SiGe HBTs have been derived using the Generalized Integral Charge-Control Relation (GICCR); the GICCR also permits modelling of HBTs with (graded) bandgap differences within the junctions.
-
Base-emitter tunneling model is available (e.g., for simulation of varactor leakage).
-
Simple parasitic substrate transistor is included in the equivalent circuit.
-
Simple parallel RC network taking into account the frequency dependent coupling between buried layer and substrate terminal.
-
Parameter extraction is closely related to the process enabling parametric yield simulation; parameter extraction procedure and list of test structures are available; HiCUM parameters can be determined using standard measurement equipment and mostly simple, decoupled extraction procedures.
-
Simple equivalent circuit and numerical formulation of model equations result in easy implementation and relatively fast execution time.
These features together with the choice of easily measurable basic variables such as junction capacitances and transit time provide - compared to the SGPM - high accuracy for digital circuit, small-signal high-frequency and, in particular, high-speed large-signal transient simulation. Also, HiCUM is laterally scaleable over a wide range of emitter widths and lengths up to high collector current densities; the scaling algorithm is generic and has been applied to the SGPM (within its validity limits).
In summary, HiCUM's major advantages over other bipolar compact models are:
-
Scalability
-
Process-based and relatively simple parameter extraction
-
Predictive capability in terms of process and layout variations
-
Fairly simple numerical formulation facilitating easy implementation and resulting in still reasonable simulation time compared to the (too) simple SGPM at high current densities
Star-Hspice HiCUM Model vs. Public HiCUM Model
Difference Highlights
To maintain flexibility, the Star-Hspice LEVEL 8 HiCUM model uses FBCS, IS, KRBI, MCF, MSR, and ZETACX as additional model parameters. See Other Parameters.
NOTE: Self-heating is not supported in the 2000.4 Star-Hspice release.
Model Implementation
Model Parameters
Parameter
|
Unit
|
Default
|
Description
|
LEVEL
|
|
9
|
HiCUM BJT level in Hspice
|
TREF
|
C
|
26.85
|
Temperature in simulation
|
Internal Transistors
Transfer Current Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
C10
|
A^2s
|
3.76e-32
|
M^2
|
Constant(IS*QP0)
|
Qp0
|
As
|
2.78e-14
|
|
Zero-bias hole charge
|
ICH
|
A
|
2.09e-0Z
|
|
High-current correction for 2D/3D
|
HFC
|
-
|
1.0
|
|
Weighting factor for Qfc (mainly for HBTs)
|
HFE
|
-
|
1.0
|
|
Weighting factor for Qef in HBTs
|
HJCI
|
-
|
1.0
|
|
Weighting factor for Qjci in HBTs
|
HJEI
|
-
|
0.0
|
|
Weighting factor for Qjei in HBTs
|
ALIT
|
-
|
0.45
|
|
Factor for additional delay time of iT
|
BE Depletion Capacitance Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
VDEI
|
V
|
0.95
|
|
Built-in voltage
|
CJEI0
|
F
|
8.11e-15
|
|
Zero-bias value
|
ZEI
|
-
|
0.5
|
|
Exponent coefficient
|
ALJEI
|
-
|
1.8
|
|
Ratio of max. to zero-bias value
|
BC Depletion Capacitance Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
CJCI0
|
F
|
1.16e-15
|
M^2
|
Zero-bias value
|
VDCI
|
V
|
0.8
|
|
Built-in voltage
|
ZCI
|
-
|
0.333
|
|
Exponent coefficient
|
VPTCI
|
V
|
416
|
|
Punch-through voltage (=q Nci w^2ci /(2epsilion))
|
Forward Transit Time Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
T0
|
s
|
4.75e-12
|
|
Low current transit time at V B'C'=0
|
DT0H
|
s
|
2.1e-12
|
|
Time constant for base and BC SCR width modulation
|
TBVL
|
s
|
40e-12
|
|
Voltage for modeling carrier jam at low VC'E'
|
TEF0
|
s
|
1.8e-12
|
|
Storage time in neutral emitter
|
GTFE
|
-
|
1.4
|
|
Exponent factor for current dep. emitter transit time
|
THCS
|
s
|
3.0e-11
|
|
Saturation time constant at high current densities
|
ALHC
|
-
|
0.75
|
|
Smoothing factor for current dep. C and B transit time
|
FTHC
|
-
|
0.6
|
|
Partitioning factor for base and collection portion
|
ALQF
|
-
|
0.225
|
|
Factor for additional delay time of Q_f
|
Critical Current Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
RCI0
|
Ohm
|
127.8
|
1/M
|
Low-field resistance of internal collector region
|
VLIM
|
V
|
0.7
|
|
Voltage separating ohmic and SCR regime
|
VPT
|
V
|
5.0
|
|
Epi punch-through vtg. of BC SCR
|
VCES
|
V
|
0.1
|
|
Internal CE sat. vtg.
|
Inverse Transit Time Parameter
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
TR
|
s
|
1.0e-9
|
|
Time constant for inverse operation
|
Base Current Components Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
IBEIS
|
A
|
1.16e-20
|
M
|
BE saturation current
|
MBEI
|
-
|
1.015
|
|
BE saturation current
|
IREIS
|
A
|
1.16e-6
|
M
|
BE recombination saturation current
|
MREI
|
-
|
2.0
|
|
BE recombination non-ideality factor
|
IBCIS
|
A
|
1.16e-20
|
M
|
BC saturation current
|
MBCI
|
-
|
1.015
|
|
BC non-ideality factor
|
Weak BC Avalanche Breakdown Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
FAVL
|
1/V
|
1.186
|
|
Prefactor for CB avalanche effect
|
QAVL
|
As
|
1.11e-14
|
M
|
Exponent factor for CB avalanche effect
|
Internal Base Resistance Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
RBI0
|
Ohm
|
0
|
1/M
|
Value at zero-bias
|
FDQR0
|
-
|
0.0
|
|
Correction factor for modulation by BE abd BC SCR
|
FGEO
|
-
|
0.73
|
|
Geometry factor (value corresponding to long emitter stripe)
|
FQI
|
-
|
0.9055
|
|
Ratio of internal to total minority charge
|
FCRBI
|
-
|
0.0
|
|
Ratio of h.f. shunt to total internal capacitance.
|
Lateral Scaling
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
LATB
|
-
|
3.765
|
|
Scaling factor for Qfc in 1_E
|
LATL
|
-
|
0.342
|
|
Scaling factor for Qfc in l_E direction
|
Peripheral Elements
BE Depletion Capacitance
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
CJEP0
|
F
|
2.07e-15
|
M
|
Zero-bias value
|
VDEP
|
V
|
1.05
|
|
Built-in voltage
|
ZEP
|
-
|
0.4
|
|
Depletion coeff
|
ALJEP
|
-
|
2.4
|
|
Ratio of max. to zero-bias value
|
Base Current
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
IBEPS
|
A
|
3.72e-21
|
M
|
Saturation current
|
MBEP
|
-
|
1.015
|
|
Non-ideality factor
|
IREPS
|
A
|
1e-30
|
M
|
Recombination saturation factor
|
MREP
|
-
|
2.0
|
|
Recombination non-ideality factor
|
BE Tunneling
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
IBETS
|
A
|
0
|
M
|
Saturation current
|
ABET
|
-
|
0.0
|
|
Exponent coefficient
|
External Elements
BC Capacitance
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
CJCX0
|
F
|
5.393e-15
|
M
|
Zero-bias depletion value
|
VDCX
|
V
|
0.7
|
|
Built-in voltage
|
ZCX
|
-
|
0.333
|
|
Exponent coefficient
|
VPTCX
|
V
|
100
|
|
Punch-through voltage
|
CCOX
|
F
|
2.97e-15
|
M
|
Collector oxide capacitance
|
FBC
|
-
|
0.1526
|
|
Partitioning factor for C_BCX =C'_BCx+C"_BCx
|
BC Base Current Component
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
IBCXS
|
A
|
4.39e-20
|
M
|
Saturation current
|
MBCX
|
-
|
1.03
|
|
Non-ideality factor
|
Other External Elements
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
CEOX
|
F
|
1.13e-15
|
M
|
Emitter-base isolation overlap cap
|
RBX
|
Ohm
|
0
|
1/M
|
External base series resistance
|
RE
|
Ohm
|
0
|
1/M
|
Emitter series resistance
|
RCX
|
Ohm
|
0
|
1/M
|
External collector series resistance
|
Substrate Transistor Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
ITSS
|
A
|
0.0
|
M
|
Transfer saturation current
|
MSF
|
-
|
0.0
|
|
Non-ideality factor (forward transfer current)
|
TSF
|
-
|
0.0
|
|
Minority charge storage transit time
|
ISCS
|
A
|
0.0
|
M
|
Saturation current of CS diode
|
MSC
|
-
|
0.0
|
|
Non-ideality factor of CS diode
|
Collector-Substrate Depletion Capacitance
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
CJS0
|
F
|
3.64e-14
|
M
|
Zero-bias value of CS depletion cap
|
VDS
|
V
|
0.6
|
|
Built-in voltage
|
ZS
|
-
|
0.447
|
|
Exponent coefficient
|
VPTS
|
V
|
1000
|
|
Punch-through voltage
|
Substrate Coupling Network
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
RSU
|
Ohm
|
0
|
1/M
|
Substrate series resistance
|
CSU
|
F
|
0
|
|
Substrate capacitance from permittivity of bulk material
|
Noise Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
KF
|
-
|
1.43e-8
|
|
Flicker noise factor (no unit only for AF=2! )
|
AF
|
-
|
2.0
|
|
Flicker noise exponent factor
|
KRBI
|
-
|
1.17
|
|
Factor for internal base resistance
|
Temperature Dependence Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
VGB
|
V
|
1.17
|
|
Bandgap-voltage
|
ALB
|
1/K
|
6.3e-3
|
|
Relative temperature coefficient of forward current gain
|
ALT0
|
1/K
|
0
|
|
First-order relative temperature coefficient of TEF0
|
KT0
|
1/K
|
0
|
|
Second-order relative temperature coefficient of TEF0
|
ZETACI
|
-
|
1.6
|
|
Temperature exponent factor RCI0
|
ALVS
|
1/K
|
1e-3
|
|
Relative temperature coefficient of saturation drift velocity
|
ALCES
|
1/K
|
0.4e-3
|
|
Relative temperature coefficient of VCES
|
ZETARBI
|
-
|
0.588
|
|
Temperature exponent factor of RBI0
|
ZETARBX
|
-
|
0.2060
|
|
Temperature exponent factor of RBX
|
ZETARCX
|
-
|
0.2230
|
|
Temperature exponent factor of RCX
|
ZETARE
|
-
|
0
|
|
Temperature exponent factor of RE
|
ALFAV
|
1/K
|
8.25e-5
|
|
Relative temperature coefficient for avalanche breakdown
|
ALQAV
|
1/K
|
1.96e-4
|
|
Relative temperature coefficient for avalanche breakdown
|
Self-Heating Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
RTH
|
K/W
|
0
|
1/M
|
Thermal resistance (not supported)
|
CTH
|
Ws/K
|
0
|
M
|
Thermal resistance (not supported)
|
Other Parameters
Parameter
|
Unit
|
Default
|
Factor
|
Description
|
FBCS
|
-
|
-1.0
|
|
Determine external BC capacitance partitioning
|
IS
|
-1.0
|
A
|
|
Ideal saturation current
|
KRBI
|
-
|
1.0
|
|
Noise analysis of internal resistance
|
MCF
|
-
|
1.0
|
|
Non-ideality factor of reverse current between base and collector. VT=VT*MCF
|
MSR
|
-
|
1.0
|
|
Non-ideality factor of reverse current in substrate transistor. VT=VT*MSR
|
ZETACX
|
-
|
1.0
|
|
Temperature exponent factor (epi-layer)
|
Netlist Input and Output Formats
This section provides the syntax for LEVEL 8 and an example of an input netlist and output format.
Syntax
Qxxx nc nb ne <ns> mname <area> <M=val> <DTEMP=val>
Qxxx
|
BJT element name
|
nc
|
Collector terminal node
|
nb
|
Base terminal node
|
ne
|
Emitter terminal node
|
ns
|
Substrate terminal node
|
mname
|
BJT model name reference
|
area
|
Emitter area multiplying factor which affects currents, resistances and capacitances(default=1)
|
M
|
Multiplier to simulate multiple BJTs in parallel
|
DTEMP
|
Difference between the element temperature and the circuit temperature in Celsisu. (Default=0.0)
|
Example
This is an example of a BJT Q1 with collector, base and emitter and substrate connected to nodes 1, 2 and 3 and 4, where the BJT model is given by QM:
Q1 1 2 0 4 QM area=1*0.5*5 dtemp=0.002
Circuit Diagram
Input Netlist
.DATA test_data vbe vce vsub
0.0 0.0 0.0
0.1 0.0 0.0
0.2 0.0 0.0
0.3 0.0 0.0
0.4 0.0 0.0
0.5 0.0 0.0
0.6 0.0 0.0
0.7 0.0 0.0
0.8 0.0 0.0
0.9 0.0 0.0
1.0 0.0 0.0
.ENDDATA
.OPTIONS
.TEMP 26.85
VIN 2 0 vbe
VC 1 0 vce
VS 4 0 vsub
VE 3 0 0
Q1 1 2 3 4 hicum
.DC data= test_data
.PRINT DC I(VIN) i2(q1) I(VC) i1(q1) I(VCS) i4(q1)
.MODEL hicum NPN LEVEL=8
+ tref = 26.85
+ c10=.3760000E-31 qp0=.2780000E-13 ich=.2090000E-01
+ hfc=.1000000E+01
+ hfe=1.0000000E+00 hjei=.000000E+00
+ hjci=.100000E+01 tr=1.00000000E-9
+ cjei0=.81100E-14 vdei=.950000E+00 zei=.5000000E+00
+ aljei=.18000E+01
+ cjci0=.11600E-14 vdci=.800000E+00 zci=.3330000E+00
+ vptci=.41600E+03
+ rci0=.127800E+03 vlim=.700000E+00 vpt=.5000000E+01
+ vces=.100000E+00
+ t0=.47500000E-11 dt0h=.210000E-11 tbvl=.400000E-11
+ tef0=.180000E-11 gtfe=.140000E+01 thcs=.300000E-10
+ alhc=.750000E+00
+ fthc=.600000E+00
+ latb=.376500E+01 latl=.342000E+00 fqi=.9055000E+00
+ alit=.450000E+00 alqf=.225000E+00
+ favl=.118600E+01 qavl=.111000E-13 alfav=.82500E-04
+ alqav=.19600E-03
+ ibeis=.11600E-19 mbei=.101500E+01 ibeps=.10000E-29
+ mbep=.200000E+01
+ ireis=.11600E-15 mrei=.200000E+01 ireps=.10000E-29
+ mrep=.200000E+01
+ rbi0=.000000E+00 fdqr0=.00000E+00 fgeo=.730000E+00
+ fcrbi=.00000E+00
+ cjep0=.00000E+00 vdep=.105000E+01 zep=.4000000E+00
+ aljep=.24000E+01
+ ceox=.000000E+00
+ cjcx0=.00000E+00 vdcx=.700000E+00 zcx=.3330000E+00
+ vptcx=.10000E+03
+ ccox=.000000E+00 fbc=.1526000E+00
+ ibcxs=.10000E-29 mbcx=.200000E+01 ibcis=.11600E-19
+ mbci=.101500E+01
+ cjs0=.000000E+00 vds=.6000000E+00 zs=.44700000E+00
+ vpts=.100000E+04
+ rcx=.0000000E+00 rbx=.0000000E+00 re=.00000000E+00
+ kf=.00000000E+00 af=.00000000E+00
+ vgb=.1170000E+01 alb=.6300000E-02 alt0=.000000E+00
+ kt0=.0000000E+00
+ zetaci=.1600E+01 alvs=.100000E-02 alces=.40000E-03
+ zetarbi=0.5880E+00 zetarcx=0.2230E+00
+ zetarbx=0.2060E+00 zetare=0.0000E+00
+ rth=0.0 cth=0.0
+ ibets=.00000E+00 abet=.000000E+00
+ itss=.000000E+00 msf=.0000000E+00 tsf=0.000000E+00
+ iscs=.000000E+00
+ msc=.0000000E+00
+ rsu=.0000000E+00 csu=.0000000E+00
.END
Star-Hspice Manual - Release 2001.2 - June 2001