Using the VBIC Bipolar Transistor Model

The VBIC (Vertical Bipolar Inter-Company) model is a new bipolar transistor model for Star-Hspice. You can use VBIC by specifying parameter LEVEL=4 for the bipolar transistor model.

VBIC addresses many problems of the SPICE Gummel-Poon model:

Understanding the History of VBIC

VBIC was developed by engineers at several companies. The detailed equations1 for all elements are given in the referenced publication. Recent information and source code can be found on the web site:

http://www-sm.rz.fht-esslingen.de/institute/iafgp/neu/VBIC/index.html

Our implementation is compliant to standard VBIC. Self-heating and excess phases have been implemented or enabled in this version 99.4

The large signal equivalent circuit for VBIC is shown in Transient Analysis. Capacitors CBCO, CBEO and resistors RCX, RBX, RE, and RS are linear elements, all other elements of the equivalent circuit are nonlinear.

VBIC Parameters

Default Model Parameters for BJT, LEVEL 4 lists the parameters for the model that you can set. Default Model Parameters for BJT, LEVEL 4 also contains the default values for the parameters. The same parameter names are used in the table and the previous referenced publication.

Figure 16-14: Transient Analysis

If values of parameters given by the user are beyond their ranges, those parameters will be reset to new values and warnings will be printed unless the option NOWARN is set.

Noise Analysis

The following sources of noise are taken into account:

The noise due to IBEX and IGC is not included in this preliminary version (nor in the standard VBIC), but will be included in the next release.

Accounting for Self-heating and excess phase

After self-heating effect is accounted for, the device element syntax becomes:

Qxxx nc nb ne <ns> <nT> mname <regular parameters> <tnodeout>

where nT is the node for temperature. If this node is given, but ns is not given, the flag "tnodeout" must be specified to indicate the fourth node is temperature node instead of substrate node. To turn on self-heating, in addition to giving the T node, the model parameter Rth must be not zero in the model card.

Excess phase has only effects on ac and transient characteristics analysis. To turn on this effect, the model parameter TD must be non-zero. But for transient analysis, to turn on excess phase is not recommended due to model's convergence very sensitive to TD value.

Example

Example with no self-heating effect.

Usage:

Q1 21 22 22 22 VBIC <parameters>

.MODEL VBIC NPN <parameters>

Complete netlist:

*VBIC example, DC analysis

.OPTIONS NODE POST NOPAGE

.WIDTH OUT=80

.DC QVcolem 0 5 0.1 SWEEP QVbasem 0.7 0.86 0.05

.TEMP -20.0 +25. +100.

.PRINT DC I1(Q1) I2(Q1) I3(Q1) I4(Q1)

.PRINT DC V(102) V(202)

Vbas 101 0 QVbasem

Vcol 102 0 QVcolem

Vsub 104 0 0.

Vemi 103 0 0.

R1 101 201 10

R2 102 202 10

R4 104 204 10

R3 103 203 10

Q1 202 201 203 204 VBIC_EXAMPLE

.model VBIC_EXAMPLE npn LEVEL=4

+ afn=1 ajc=-0.5 aje=0.5 ajs=0.5

+ avc1=0 avc2=0 bfn=1 cbco=0 cbeo=0 cjc=2e-14

+ cjcp=4e-13 cje=le-13 cjep=le-13 cth=0

+ ea=1.12 eaic=1.12 eaie=1.12 eais=1.12 eanc=1.12

+ eane=1.12 eans=1.12 fc=0.9 gamm=2e-11 hrcf=2

+ ibci=2e-17 ibcip=0 ibcn=5e-15 ibcnp=0

+ ibei=1e-18 ibeip=0 iben=5e-15 ibenp=0

+ ikf=2e-3 ikp=2e-4 ikr=2e-4 is=le-16 isp=le-15 itf=8e-2

+ kfn=0 mc=0.33 me=0.33 ms=0.33

+ nci=1 ncip=1 ncn=2 ncnp=2 nei=1 nen=2

+ nf=1 nfp=1 nr=1 pc=0.75 pe=0.75 ps=0.75 qco=le-12 qtf=0

+ rbi=4 rbp=4 rbx=1 rci=6 rcx=1 re=0.2 rs=2

+ rth=300 tavc=0 td=2e-11 tf=10e-12 tnf=0 tr=100e-12

+ tnom=25 tref=25 vef=10 ver=4 vo=2

+ vtf=0 wbe=1 wsp=1

+ xii=3 xin=3 xis=3 xrb=0 xrc=0 xre=0 xrs=0 xtf=20 xvo=0

*.END

 

Example with self-heating effects.

*# VERSION: 99.4

 

.option absmos=1e-12 relmos=1e-6 relv=1e-6 absv=1e-9

 

vc c 0 0

vb b 0 0

ve e 0 0

vs s 0 0

 

vc1 c1 c 0

vb1 b1 b 0

ve1 e1 e 0

vs1 s1 s 0

*vt t 0 1meg

 

.temp 27

 

Q1 c1 b1 e1 s1 t mod1 area=1 tnodeout

 

.model mod1 npn LEVEL=4

+ Tnom=27 RCX=10 RCI=60 VO=2 GAMM=2.e-11

+ HRCF=2 RBX=10 RBI=40 RE=2

+ RS=20 RBP=40 IS=1e-16 NF=1.00000e+00

+ NR=1.00000e+00 FC=9.00000e-01 CBEO=0

+ CJE=1.e-13 PE=0.75 ME=0.33

+ AJE=-5.00000e-01 CBCO=0 CJC=2e-14

+ QCO=1e-12 CJEP=1e-13 PC=7.50000e-01

+ MC=3.30000e-01 AJC=-5.00000e-01 CJCP=4e-13

+ PS=7.50000e-01 MS=3.30000e-01 AJS=-5.00000e-01

+ IBEI=1e-18 WBE=1.0000 NEI=1.00000e+00

+ IBEN=5e-15 NEN=2.00000e+00 IBCI=2e-17

+ NCI=1.00000e+00 IBCN=5e-15 NCN=2.00000e+00

+ AVC1=2 AVC2=15 ISP=1e-15

+ WSP=1.000e+00 NFP=1.00000e+00 IBEIP=0

+ IBENP=0 IBCIP=0 NCIP=1.00000e+00

+ IBCNP=0 NCNP=2.00000e+00 VEF=10

+ VER=4 IKF=0.002 IKR=0.0002 IKP=0.0002

+ TF=1.e-11 QTF=0 XTF=20

+ VTF=0 ITF=0.08 TR=1e-10

+ KFN=0 AFN=1.0e+00

+ BFN=1.0000e+00 XRE=0 XRB=0

+ XRC=0 XRS=0 XVO=0

+ EA=1.12000e+00 EAIE=1.12000e+00

+ EANE=1.12000e+00 EANC=1.12000e+00

+ EANS=1.12000e+00 XIS=3.00000e+00

+ XII=3.00000e+00 XIN=3.00000e+00

+ TNF=0 TAVC=0

+ RTH=300 CTH=0

+ TD=0

*+ TD=2.e-11

 

.dc vc 0.0 5.0001 0.05 vb 0.7 1.0001 0.05

.print i(vc) i(vb) v(t)

.end

 

where v(t) print out the device temperature using T node.

 

Table 16-5: Default Model Parameters for BJT, LEVEL 4

Name (Alias)

Unit

Default

Description

AFN

 

1

Flicker noise exponent for current

AJC

 

-0.5

Base-collector capacitance switching parameter

AJE

 

-0.5

Base-emitter capacitance switching parameter

AJS

 

-0.5

Substrate-collector capacitance switching parameter

AVC1

V-1

0

Base-collector weak avalanche parameter 1

AVC2

V-1

0

Base-collector weak avalanche parameter 2

BFN

 

1

Flicker noise exponent for 1/f dependence

CBCO (CBC0)

F

0

Extrinsic base-collector overlap capacitance

CBEO (CBE0)

F

0

Extrinsic base-emitter overlap capacitance

CJC

F

0

Base-collector intrinsic zero bias capacitance

CJCP

F

0

Substrate-collector zero bias capacitance

CJE

F

0

Base-emitter zero bias capacitance

CJEP

F

0

Base-collector extrinsic zero bias capacitance

CTH

J/K

0

Thermal capacitance

EA

eV

1.12

Activation energy for IS

EAIC

eV

1.12

Activation energy for IBCI/IBEIP

EAIE

eV

1.12

Activation energy for IBEI

EAIS

eV

1.12

Activation energy for IBCIP

EANC

eV

1.12

Activation energy for IBCN/IBENP

EANE

eV

1.12

Activation energy for IBEN

EANS

eV

1.12

Activation energy for IBCNP

FC

 

0.9

Forward bias depletion capacitance limit

GAMM

 

0

Epi doping parameter

HRCF

 

1

High-current RC factor

IBCI

A

1e-16

Ideal base-collector saturation current

IBCIP

A

0

Ideal parasitic base-collector saturation current

IBCN

A

1e-15

Non-ideal base-collector saturation current

IBCNP

A

0

Non-ideal parasitic base-collector saturation current

IBEI

A

1e-18

Ideal base-emitter saturation current

IBEIP

A

0

Ideal parasitic base-emitter saturation current

IBEN

A

1e-15

Non-ideal base-emitter saturation current

IBENP

A

0

Non-ideal parasitic base-emitter saturation current

IKF

A

2e-3

Forward knee current

IKP

A

2e-4

Parasitic knee current

IKR

A

2e-4

Reverse knee current

IS

A

1e-16

Transport saturation current

ISP

A

1e-16

Parasitic transport saturation current

ITF

A

1e-3

Coefficient of TF dependence in Ic

KFN

 

0

Base-emitter flicker noise constant

MC

 

0.33

Base-collector grading coefficient

ME

 

0.33

Base-emitter grading coefficient

MS

 

0.33

Substrate-collector grading coefficient

NCI

 

1

Ideal base-collector emission coefficient

NCIP

 

1

Ideal parasitic base-collector emission coefficient

NCN

 

2

Non-ideal base-collector emission coefficient

NCNP

 

2

Non-ideal parasitic base-collector emission coefficient

NEI

 

1

Ideal base-emitter emission coefficient

NEN

 

2

Non-ideal base-emitter emission coefficient

NF

 

1

Forward emission coefficient

NFP

 

1

Parasitic forward emission coefficient

NR

 

1

Reverse emission coefficient

PC

V

0.75

Base-collector built-in potential

PE

V

0.75

Base-emitter built-in potential

PS

V

0.75

Substrate-collector built-in potential

QCO (QC0)

C

0

Epi charge parameter

QTF

 

0

Variation of TF with base-width modulation

RBI

Ohm

1e-1

Intrinsic base resistance

RBP

Ohm

1e-1

Parasitic base resistance

RBX

Ohm

1e-1

Extrinsic base resistance

RCI

Ohm

1e-1

Intrinsic collector resistance

RCX

Ohm

1e-1

Extrinsic collector resistance

RE

Ohm

1e-1

Emitter resistance

RS

Ohm

1e-1

Substrate resistance

RTH

K/W

0

Thermal resistance

TAVC

1/K

0

Temperature coefficient of AVC2

TD

s

0

Forward excess-phase delay time

TF

s

1e-11

Forward transit time

TNF

1/K

0

Temperature coefficient of NF

TR

s

1e-11

Reverse transit time

TREF (TNOM)

o C

27

Nominal measurement temperature of parameters (please do not use TNOM alias, though it is allowed)

VEF

V

0

Forward Early voltage

VER

V

0

Reverse Early voltage

VO (V0)

V

0

Epi drift saturation voltage

VTF

V

0

Coefficient of TF dependence on Vbc

WBE

 

1

Portion of IBEI from Vbei, 1-WBE from Vbex

WSP

 

1

Portion of ICCP from Vbep, 1-WSP from Vbci

XII

 

3

Temperature exponent of IBEI/IBCI/IBEIP/IBCIP

XIN

 

3

Temperature exponent of IBEN/IBCN/IBENP/IBCNP

XIS

 

3

Temperature exponent of IS

XRB

 

1

Temperature exponent of base resistance

XRC

 

1

Temperature exponent of collector resistance

XRE

 

1

Temperature exponent of emitter resistance

XRS

 

1

Temperature exponent of substrate resistance

XTF

 

0

Coefficient of TF bias dependence

XVO (XV0)

 

0

Temperature exponent of VO

Notes on Using VBIC

1. Set LEVEL to 4 to identify the model as a VBIC bipolar junction transistor model.

2. The LEVEL 4 model does not scale with any area terms, and does not yet scale with M.

3. Setting these parameters to zero infers a value of infinity: HRCF, IKF, IKP, IKR, ITF, VEF, VER, VO, VTF.

4. Parameters CBC0, CBE0, QC0, TNOM, V0, and XV0 are aliases for CBCO, CBEO, QCO, TREF, VO, and XVO, respectively. Avant! discourages use of TNOM as a model parameter name as it is used as the name of the default room temperature in Star-Hspice.

5. The default room temperature is 25 degrees in Star-Hspice, but is 27 in some other simulators. If the VBIC bipolar junction transistor model parameters are specified at 27 degrees, TREF=27 should be added to the model, so that the model parameters will be interpreted correctly. It is a matter of choice whether or not to set the nominal simulation temperature to 27, by adding .OPTION TNOM=27 to the netlist. This should be done when testing Star-Hspice versus other simulators that use 27 as the default room temperature.

6. Pole-zero simulation of this model is not supported.

7. For this version of implementation, all seven internal resistors should have values greater than or equal to 1.0e -3 . Values smaller than this will be reassigned a value of 1.0e -3.


1. C. McAndrew, J. Seitchik, D. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian, J. Parker, D. Roulston, M. Schroter, P. van Wijnen, and L. Wagner, "VBIC95: The vertical bipolar intercompany model," IEEE Journal of Solid State Circuits, vol.31, p.1476-1483, 1996.

Star-Hspice Manual - Release 2001.2 - June 2001