LEVEL 13 BSIM Model

The Star-Hspice LEVEL 13 MOSFET model is an adaptation of BSIM (Berkeley Short Channel IGFET) from SPICE 2G.6 (SPICE). The model is formulated on the device physics of small-geometry MOS transistors. To invoke the subthreshold region, set the model parameter N0 (low field weak inversion gate drive coefficient) to less than 200. The Star-Hspice wire model (from resistor element), which is compatible with SPICE BSIM interconnect model for polysilicon and metal layers, simulates resistors and capacitors generated with interconnect. The Star-Hspice capacitor model (from capacitor element) simulates capacitors generated with interconnect. The Star-Hspice MOSFET diffusion model is compatible with the SPICE BSIM diffusion model.

Two different types of formats are available for specifying the BSIM model parameters. Enter the model parameters as a sequence of numbers similar to SPICE, or set them using model parameter assignments. When converting from SPICE to Star-Hspice, the keyletter for the MOSFET device is S for SPICE BSIM and M for Star-Hspice. (Refer to the example of Star-Hspice BSIM model circuit file at the end of this section.) Some model parameter names have been modified due to the SPICE BSIM model installation in Star-Hspice.

BSIM Model Features

LEVEL 13 Model Parameters


NOTE: When reading parameter names, be aware of the difference in appearance between the upper case letter O, the lower case letter o, and the number zero (0).

For reference purposes only, the default values below are obtained from a medium size n-channel MOSFET device.

All LEVEL 13 parameters should be specified using NMOS conventions, even for PMOS (for example, ETA0=0.02, not ETA0=-0.02).

Transistor Process Parameters

Name (Alias)

Units

Default

Description

LEVEL

 

1

MOSFET model level selector, set to 13 for the Star-Hspice BSIM model

CGBOM, (CGBO)

F/m

2.0e-10

Gate-to-bulk parasitic capacitance (F/m of length)

CGDOM, (CGDO)

F/m

1.5e-9

Gate-to-drain parasitic capacitance (F/m of width)

CGSOM, (CGSO)

F/m

1.5e-9

Gate-to-source parasitic capacitance (F/m of width)

DL0

µm

0.0

Difference between drawn poly and electrical

DW0

µm

0.0

Difference between drawn diffusion and electrical

DUM1

 

0.0

Dummy (not used)

DUM2

 

0.0

Dummy (not used)

ETA0

 

0.0

Linear vds threshold coefficient

LETA

mm

0.0

Length sensitivity

WETA

µm

0.0

Width sensitivity

K1

V1/2

0.5

Root-vsb threshold coefficient

LK1

V1/2·µm

0.0

Length sensitivity

WK1

V1/2·µm

0.0

Width sensitivity

K2

 

0.0

Linear vsb threshold coefficient

LK2

µm

0.0

Length sensitivity

WK2

µm

0.0

Width sensitivity

MUS

cm 2 /(V · s )

600

High drain field mobility

LMS (LMUS)

µ m·cm 2 /(V·s)

0.0

Length sensitivity

WMS (WMUS)

µ m·cm 2 /(V·s)

0.0

Width sensitivity

MUZ

cm2/(V·s)

600

Low drain field first order mobility

LMUZ

µ m·cm 2 /(V·s)

0.0

Length sensitivity

WMUZ

µ m·cm 2 /(V·s)

0.0

Width sensitivity

N0

 

0.5

Low field weak inversion gate drive coefficient (a value of 200 for N0 disables weak inversion calculation)

LN0

 

0.0

Length sensitivity

WN0

 

0.0

Width sensitivity

NB0

 

0.0

Vsb reduction to low field weak inversion gate drive coefficient

LNB

 

0.0

Length sensitivity

WNB

 

0.0

Width sensitivity

ND0

 

0.0

Vds reduction to low field weak inversion gate drive coefficient

LND

 

0.0

Length sensitivity

WND

 

0.0

Width sensitivity

PHI0

V

0.7

Two times the Fermi potential

LPHI

V·µm

0.0

Length sensitivity

WPHI

V·µm

0.0

Width sensitivity

TREF

°C

25.0

Reference temperature of model (local override of TNOM)

TOXM, (TOX)

µ m , (m)

0.02

Gate oxide thickness (TOXM or TOX > 1 is interpreted as Angstroms)

U00

1/V

0.0

Gate field mobility reduction factor

LU0

µm/V

0.0

Length sensitivity

WU0

µm/V

0.0

Width sensitivity

U1

µm/V

0.0

Drain field mobility reduction factor

LU1

µm2/V

0.0

Length sensitivity

WU1

µm2/V

0.0

Width sensitivity

VDDM

V

50

Critical voltage for high drain field mobility reduction

VFB0 (VFB)

V

-0.3

Flatband voltage

LVFB

V·µm

0.0

Length sensitivity

WVFB

V·µm

0.0

Width sensitivity

X2E

1/V

0.0

Vsb correction to linear vds threshold coefficient

LX2E

µm/V

0.0

Length sensitivity

WX2E

µm/V

0.0

Width sensitivity

X2M (X2MZ)

cm2/(V2·s)

0.0

Vsb correction to low field first order mobility

LX2M (LX2MZ)

µm·cm2/(V2·s)

0.0

Length sensitivity

WX2M (WX2MZ)

µm·cm2/(V2·s)

0.0

Width sensitivity

X2MS

cm 2 /(V 2 ·s )

0.0

Vbs reduction to high drain field mobility

LX2MS

µ m·cm 2 /(V 2 ·s)

0.0

Length sensitivity

WX2MS

µ m·cm 2 /(V 2 ·s)

0.0

Width sensitivity

X2U0

1/V 2

0.0

Vsb reduction to GATE field mobility reduction factor

LX2U0

µ m/V 2

0.0

Length sensitivity

WX2U0

µ m/V 2

0.0

Width sensitivity

X2U1

µ m/V 2

0.0

Vsb reduction to DRAIN field mobility reduction factor

LX2U1

µ m 2 /V 2

0.0

Length sensitivity

WX2U1

µ m 2 / V 2

0.0

Width sensitivity

X3E

1/V

0.0

Vds correction to linear vds threshold coefficient

LX3E

µm/V

0.0

Length sensitivity

WX3E

µm/V

0.0

Width sensitivity

X3MS

cm 2 /
(V
2 · s)

5.0

Vds reduction to high drain field mobility

LX3MS

µ m·cm 2 / (V 2 ·s)

0.0

Length sensitivity

WX3MS

µ m·cm 2 /(V 2 ·s)

0.0

Width sensitivity

X3U1

µ m/V 2

0.0

Vds reduction to drain field mobility reduction factor

LX3U1

µ m 2 /V 2

0.0

Length sensitivity

WX3U1

µ m 2 /V 2

0.0

Width sensitivity

XPART

 

1.0

Selector for gate capacitance charge-sharing coefficient

Diffusion Layer Process Parameters

Name (Alias)

Units

Default

Description

CJW, (CJSW)

F/m

0.0

Zero-bias bulk junction sidewall capacitance

CJM, (CJ)

F/m 2

4.5e-5

Zero-bias bulk junction bottom capacitance

DS

m

0.0

Average variation of size due to side etching or mask compensation (not used)

IJS, (JS)

A/m 2

0

Bulk junction saturation current

JSW

A/m

0.0

Sidewall bulk junction saturation current

MJ0, (MJ)

 

0.5

Bulk junction bottom grading coefficient

MJW, (MJSW)

 

0.33

Bulk junction sidewall grading coefficient

PJ, (PB)

V

0.8

Bulk junction bottom potential

PJW, (PHP)

V

0.8

Bulk junction sidewall potential

RSHM, (RSH)

ohm/sq

0.0

Sheet resistance/square

WDF

m

0.0

Default width of the layer (not used)


NOTE: The wire model includes poly and metal layer process parameters.

Basic Model Parameters

Name (Alias)

Units

Default

Description

LD (DLAT, LATD)

m

 

Lateral diffusion into channel from source and drain diffusion.

If LD and XJ are unspecified, then LD default=0.0.

When LD is unspecified but XJ is specified, LD is calculated from XJ. LD Default=0.75 · XJ.

LDscaled = LD · SCALM

LDAC

m

 

This parameter is the same as LD, but if LDAC is included in the .MODEL statement, it replaces LD in the Leff calculation for AC gate capacitance.

LMLT

 

1.0

Length shrink factor

LREF

m

0.0 *

Channel length reference

LREFscaled = LREF · SCALM

WD

m

0.0

Lateral diffusion into channel from bulk along width

WDscaled = WD · SCALM

WDAC

m

 

This parameter is the same as WD, but if WDAC is included in the .MODEL statement, it replaces WD in the Weff calculation for AC gate capacitance.

WMLT

 

1.0

Diffusion layer and width shrink factor

XL (DL, LDEL)

m

0.0

Accounts for masking and etching effects

XLscaled = XL · SCALM

XW (DW, WDEL)

m

0.0

Accounts for masking and etching effects

XWscaled = XW · SCALM

WREF

m

0.0 *

Reference channel width

WREFscaled = WREF · SCALM


NOTE: *If LREF and WREF are not defined in the model, they take a value of infinity. The default of 0.0 is for Star-Hspice only.

Temperature Parameters

Name (Alias)

Units

Default

Description

BEX

 

-1.5

Temperature exponent for MUZ and MUS mobility parameters

FEX

 

0.0

Temperature exponent for mobility reduction factor U1

TCV

V/°K

0.0

Flat-band voltage temperature coefficient

TREF

°C

25

Temperature at which parameters are extracted. This parameter defaults to the option TNOM, which defaults to 25 °C.

Sensitivity Factors of Model Parameters

For transistors, denote the L (channel length) and W (channel width) sensitivity factors of a basic electrical parameter are denoted by adding the characters `L' and `W' at the start of the name. For example, VFB0 sensitivity factors are LVFB and WVFB. If A0 is a basic parameter, then LA and WA are the corresponding L and W sensitivity factors of this parameter. LA and WA cannot be scaled using option SCALM in Star-Hspice. The model uses the general formula below to obtain this parameter value.

 

LA and WA are specified in units of microns times the units of A0.

The left side of the equation represents the effective model parameter value after device size adjustment. All the effective model parameters are in lower case and start with the character "z", followed by the parameter name.

Example

 

 

 

 

 

 

 

 

 

 

 

.MODEL VERSION Changes to BSIM Models

The VERSION parameter to the .MODEL statement allows portability of LEVEL 13 BSIM and LEVEL 39 BSIM2 models between Star-Hspice versions. Using the VERSION parameter in a LEVEL 13 .MODEL statement results in the following changes to the BSIM model:

Model Version

Effect of VERSION on BSIM model

9007B

LEVEL 13 BSIM model introduced: no changes

9007D

Removes the K2 limit

92A

Changes the TOX parameter default from 1000 A to 200 A

92B

Adds the K2LIM parameter, which specifies the K2 limit

93A

Introduces gds constraints

93A.02

VERSION parameter introduced

95.1

Fixes nonprinting TREF and incorrect GMBS problems

96.1

Flatband voltage temperature adjustment has been changed

LEVEL 13 Equations

This section lists the LEVEL 13 model equations.

Effective Channel Length and Width

The effective channel length and width for LEVEL 13 is determined differently, depending on the specified model parameters.

If DL0 is specified then,

 

 

Otherwise, if XL or LD is specified,

 

 

If DW0 is specified, then

 

 

Otherwise, if XW or WD is specified, then

 

 

IDS Equations

The device characteristics are modeled by process-oriented model parameters, which are mapped into model parameters at a specific bias voltage. The ids equations are as follows:

Cutoff Region, vgs <= vth

(see subthreshold current)

On Region, vgs > vth

For vds < vdsat, triode region:

 

For vds >= vdsat, saturation region:

 

where:

 

 

 

The carrier mobility, uo, is calculated by quadratic interpolation through three data points.


 

and the sensitivity of uo to vds at vds=VDDM, which is zx3ms.

The "body" factor is calculated by:

 

where:

 

The "arg" term in saturation region current is calculated by:

 

where:

 

and:

, UPDATE=2

, UPDATE=0, 1

Threshold Voltage

The threshold voltage can be expressed as:

 

where

 

and:

, UPDATE=0, 2
, UPDATE=1

Saturation Voltage (vdsat)

The saturation voltage in the BSIM model is calculated as follows:

 

Subthreshold Current ids

The subthreshold current isub is calculated when zn0 is less than 200 as follows:

 

where:

 

 

 

and:

 


NOTE: The current isub also is added to the ids current in the strong inversion.

Resistors and Capacitors Generated with Interconnects

See the Star-Hspice wire model table (resistor element) for the model parameters used.

Resistances:

 

Capacitances:

 

Temperature Effect

UPDATE=0, 1

UPDATE=0, 1

UPDATE=2

 

 

where:

 

Charge-Based Capacitance Model

The Star-Hspice LEVEL 13 capacitance model conserves charge and has nonreciprocal attributes. Using charge as the state variable guarantees charge conservation. You can get total stored charge in each of the gate, bulk, and channel regions by integrating the distributed charge densities/area of the active region.

The channel charge is partitioned into drain and source components in two physically significant methods by using the model parameter XPART: 40/60, or 0/100 in the saturation region, which smoothly changes to 50/50 in the triode region. XPART=0 selects 40/60 drain/source charge-partitioning in the saturation region, while XPART=1 and XPART=0.5 select 0/100 and 50/50 for drain/source charge-partitioning in the saturation region, respectively.

Define:

 

 

 

 

If then,

 

 

If then,

 

Regions Charge Expressions

Accumulation Region, vgs <= vtho, vgs <= zvfb - vsb

 

 

 

 

Subthreshold Region, vgs <= vtho, vgs > zvfb - vsb

 

 

 

50/50 Channel-Charge Partitioning for Drain and Source, XPART=.5
Triode Region, vgs > vtho, vds <= vpof

 

 

 

 

Saturation Region, vgs > vtho, vds > vpof

 

 

 

 

40/60 Channel-Charge Partitioning for Drain and Source, XPART=0
Triode Region, vgs > vtho, vds <= vpof

 

 

 

 

Saturation Region, vgs> vtho, vds > vpof

 

 

 

 

0/100 Channel-Charge Partitioning for Drain and Source, XPART=1
Triode Region, vgs > vtho, vds <= vpof

 

 

 

 

Saturation Region, vgs > vtho, vds > vpof

 

 

 

 

Prevention of Negative Output Conductance

Star-Hspice internally protects against conditions in the LEVEL 13 model that would cause convergence problems due to negative output conductance. The constraints imposed are:

 

 

These constraints are imposed after length and width adjustment and VBS dependence. This feature is gained at the expense of some accuracy in the saturation region, particularly at high Vgs. Consequently, BSIM1 models might need to be requalified in the following situations:

1. Devices exhibit self-heating during characterization, which causes declining I ds at high V ds . This would not occur if the device characterization measurement sweeps V ds .

2. The extraction technique produces parameters that result in negative conductance.

3. Voltage simulation is attempted outside the characterized range of the device.

Calculations Using LEVEL 13 Equations

To verify the equations, it is helpful to do very simple tests using Star-Hspice and check the results with a hand calculator. Check threshold, vdsat, and ids for a very simple model, with many parameters set to zero. There is no series resistance, RSH=0. Diode current has been turned off, JS=JSW=IS=0. The LEVEL 13 subthreshold current has been turned off by n0=200. The geometry parameters are set to zero, so Leff=L=1u, Weff=W=1u.

A value of TOX has been chosen to give:

 

The test is at vbs=-0.35, so that phi-vbs=1.0:

$ t1

.option ingold=2 numdgt=6

vd d 0 5

vg g 0 5

vb b 0 -0.35

m1 d g 0 b nch w=10u L=1u

.dc vd 4 5 1

.print ids=lx4(m1) vth=lv9(m1) vdsat=lv10(m1)

.model nch nmos LEVEL=13

+ vfb0=-0.4 lvfb=0 wvfb=0

+ phi0=0.65 lphi=0 wphi=0

+ k1=0.5 lk1=0 wk1=0

+ k2=0 lk2=0 wk2=0

+ eta0=1e-3 leta=0 weta=0

+ muz=600 mus=700 x3ms=10

+ xl=0 ld=0 xw=0 wd=0

+ u00=0 lu0=0 wu0=0

+ u1=0 lu1=0 wu1=0

+ tox=172.657

+ acm=2 rsh=0 js=0 jsw=0 is=0 n0=200

.end

Results from Star-Hspice

ids vth vdsat

1.09907e-02 7.45000e-01 3.69000e+00

Calculations at vgs=vds=5, vbs=-0.35

 

 

 

 

 

 

At vds=VDDM (default VDDM=5), mobility=mus=700

 

 

 

These calculations agree with the Star-Hspice results given above.

Compatibility Notes

Model Parameter Naming

The following names are HSPICE-specific: U00, DL0, DW0, PHI0, ETA0, NB0, ND0. A zero was added to the SPICE names to avoid conflicts with other standard Star-Hspice names. For example, U0 cannot be used because it is an alias for UB, the mobility parameter in many other levels. DL cannot be used because it is an alias for XL, a geometry parameter available in all levels.

Star-Hspice supports the use of DL0 and DW0, but the use of XL, LD, XW, WD is recommended instead (noting the difference in units).

Watch the units of TOX. It is safest to enter a number greater than one, which is always interpreted as Angstroms.

To avoid negative gds:

1. Set X3U1, LX3U1 and WX3U1 to zero.

2. Check that

zx3ms>=0, where zx3ms=X3MS, with L, W adjustment

3. Check that

zmuz+VDDM · zx3ms<zmus

SPICE/Star-Hspice Parameter Differences

A cross-reference table for UCB's BSIM1 and Avant!'s LEVEL 13 model parameters is provided for comparison. Units are given in brackets. The Star-Hspice parameter name is given only if it differs from the SPICE name. The model specifies units for Star-Hspice parameters only if they differ from SPICE's. Star-Hspice aliases are in parentheses. Note that some Star-Hspice aliases match the SPICE names.

An asterisk (*) in front of a UCB SPICE name denotes an incompatibility between the Star-Hspice name and the UCB SPICE name (that is, the Star-Hspice alias does not match, or units are different).

Even when there is a difference in parameter name between Star-Hspice and SPICE, the corresponding L and W sensitivity parameter names might not differ. L and W sensitivity parameters are only listed for the few cases for which there is a difference.

Table 21-1: Comparison of Star-Hspice Parameters with
UCB SPICE 2 and 3

UC Berkeley SPICE 2, 3

Avant!'s Star-Hspice

VFB [V]

VFB0 (VFB)

PHI [V]

PHI0

K1 [V1/2]

same

K2

same

* ETA

ETA0

MUZ [cm2/V·s]

same

* DL [µm]

DL0

* DW [µm]

DW0

* U0 [1/V]

U00

* U1 [µ/V]

same

X2MZ [cm2/V2·s]

X2M (X2MZ)

LX2MZ [µm·cm2/V2·s]

X2M (LX2MZ)

WX2MZ [µm·cm2/V2·s]

WX2M (WX2MZ)

X2E [1/V]

same

X3E [1/V]

same

X2U0 [1/V2]

same

X2U1 [µm/V2]

same

MUS [cm2/V·s]

same

LMUS [µm·cm2/V·s]

LMS (LMUS)

WMUS [µm·cm2/V·s]

WMS (WMUS)

X2MS [cm2/V2·s]

same

X3MS [cm2/V2·s]

same

X3U1 [µm/V2]

same

* TOX [µm]

TOXM[µ] (TOX[m])

* TEMP [°C]

TREF

* VDD [V]

VDDM

CGDO [F/m]

CGDOM (CGDO)

CGSO [F/m]

CGSOM (CGSO)

CGBO [F/m]

CGBOM (CGBO)

XPART

same

N0

same

* NB

NB0

* ND

ND0

RSH [ohm/sq]

RSHM (RSH)

JS [A/m2]

IJS (JS)

PB [V]

PJ (PB)

MJ

MJ0 (MJ)

* PBSW [V]

PJW (PHP)

MJSW

MJW (MJSW)

CJ [F/m2]

CJM (CJ)

CJSW [F/m]

CCJW (CJSW)

* WDF [m]

-

* DELL [m]

-

In UCB SPICE, you must specify all BSIM model parameters. In Star-Hspice, there are defaults for the parameters.

Parasitics

ACM > 0 invokes Star-Hspice parasitic diodes. ACM=0 (default) is SPICE style.

Temperature Compensation

The model reference temperature TNOM's default is 25°C in Star-Hspice unless .OPTION SPICE is set, causing TNOM to default to 27°C. This option also sets some other SPICE compatibility parameters. Star-Hspice TNOM is set in an .OPTION line in the netlist and can always be overridden locally (that is, for a model) with model parameter TREF. (The model "reference temperature" means that the model parameters were extracted at and are valid at that temperature).

In UCB SPICE, TNOM (default 27°C) is not effective for BSIM, and the model parameter TEMP is used instead (and must be specified) as both the model reference temperature and analysis temperature. The analysis at TEMP only applies to thermally activated exponentials in the model equations. There is no adjustment of model parameter values with TEMP. It is assumed that the model parameters were extracted at TEMP, TEMP being both the reference and the analysis temperature.

In contrast to UCB SPICE's BSIM, Star-Hspice LEVEL 13 does provide for temperature analysis. The default analysis temperature is 25°C in Star-Hspice (and 27°C in UCB SPICE for all model levels except for BSIM, as explained in the previous paragraph). Use a .TEMP statement in the Star-Hspice netlist to change the Star-Hspice analysis temperature.

Star-Hspice provides two temperature coefficients for the LEVEL 13 model, TCV and BEX. Threshold voltage is adjusted by

 

There are two implementations of the BEX factor, selected by the UPDATE parameter, which is described in the next section. The mobility in BSIM is a combination of five quantities: MUZ, zmus, z3ms, zx2mz, and zx2ms.

BEX Usage

 

 

 

 

 

Note: This is equivalent to multiplying the final mobility by the factor.

UPDATE Parameter

The UPDATE parameter selects between variations of the BSIM equations. UPDATE=0 is the default, which is consistent with UCB SPICE3. UPDATE=3 also is consistent with UCB SPICE3 and BEX usage.

Here is the sequence of UPDATE choices, which were responses to specific customer requests.

UPDATE=0

UCB compatible, previous BEX usage

UPDATE=1

Special X2E equation, previous BEX usage

UPDATE=2

Remove 1/Leff in U1 equation, present BEX usage

UPDATE=3

UCB compatible, present BEX usage

Explanations

The normal X2E equation is

 

The special X2E equation, for UPDATE=1 only, is

 

The special X2E equation was requested to match a parameter extraction program. Whenever you use a parameter extraction program, the equations should be checked carefully.

The original U1 equation divides by Leff in microns,

 

This is one of the few places where Leff enters explicitly into the BSIM equations; usually the Leff variation is handled by the L-adjustment model parameters, such as LU1. Physically xu1 should decrease as 1/Leff at long channels, but when dealing with short-channel devices, you can turn off this variation. Set UPDATE=2 to remove the 1/Leff factor in the xu1 equation.

UPDATE=2 introduces the present BEX usage as the 1/Leff removal ability. UPDATE=3 provides the present BEX usage with the previous xu1 equation.

IDS and VGS Curves for PMOS and NMOS

FILE:ML13IV.SP IDS AND VGS CURVES FOR PMOS AND NMOS

Two Different Types Of Model Parameter Formats Used

.OPTIONS ACCT LIST NOPAGE

.OP

.DC VDDN 0 5.0 .1 VBBN 0 -3 -3

 

*N-CHANNEL I D S CURVES (VD=0 to 5, VG=1,2,3,4,5, VB=0,-3)

.PRINT DC I(VN1) I(VN2) I(VN3) I(VN4) I(VN5) V(90)

.PLOT DC I(VN1) I(VN2) I(VN3) I(VN4) I(VN5)

 

*P-CHANNEL I D S CURVES (VD=0 to -5,VG=-1,-2,-3,-4,-5,VB=0,3)

.PRINT DC I(VP1) I(VP2) I(VP3) I(VP4) I(VP5) V(90)

.PLOT DC I(VP1) I(VP2) I(VP3) I(VP4) I(VP5)

VGS Curves

.PRINT DC I(VN6) I(VP6)

.PLOT DC I(VN6) I(VP6)

* N-CHANNEL LX7=GM (VD=5, VG=0 to ->5, VS=0, VB=0,-3)

* N-CHANNEL LX8=GD (VD=0 to 5,VG=5, VS=0, VB=0,-3)

* N-CHANNEL LX9=GB (VD=5, VG=5, VS=0, VB=0 to -5)

.PLOT DC LX7(M21) LX8(M5) LX9(M31)

 

* P-CHANNEL LX7=GM (VD=0, VG=0->-5, VS=-5 VB=0,3)

* P-CHANNEL LX8=GD (VD=0 to -5,VG=-5, VS=-5, VB=0,3)

* P-CHANNEL LX9=GB (VD=0, VG=0, VS=-5, VB=0- >5)

.PLOT DC LX7(M22) LX8(M15) LX9(M32)

*

VDDN 99 0 5.0

VBBN 90 0 0

EPD 98 0 99 0 -1

EPB 91 0 90 0 -1

 

V1 1 0 1

V2 2 0 2

V3 3 0 3

V4 4 0 4

V5 5 0 5

V11 11 0 -1

V12 12 0 -2

V13 13 0 -3

V14 14 0 -4

V15 15 0 -5

*

VN1 99 31 0

VN2 99 32 0

VN3 99 33 0

VN4 99 34 0

VN5 99 35 0

 

M1 31 1 0 90 PC_NM1 8U 8U

M2 32 2 0 90 PC_NM1 8U 8U

M3 33 3 0 90 PC_NM1 8U 8U

M4 34 4 0 90 PC_NM1 8U 8U

M5 35 5 0 90 PC_NM1 8U 8U

*

VP1 98 41 0

VP2 98 42 0

VP3 98 43 0

VP4 98 44 0

VP5 98 45 0

 

M11 41 11 0 91 PC_PM1 8U 8U

M12 42 12 0 91 PC_PM1 8U 8U

M13 43 13 0 91 PC_PM1 8U 8U

M14 44 14 0 91 PC_PM1 8U 8U

M15 45 15 0 91 PC_PM1 8U 8U

GM Test

VN6 5 36 0

VP6 0 46 0

M21 36 99 0 90 PC_NM1 8U 8U

M22 46 98 15 91 PC_PM1 8U 8U

GM B CVN7 5 37 0

VP7 0 47 0

M31 37 5 0 98 PC_NM1 8U 8U

M32 47 0 15 99 PC_PM1 8U 8U

.PROCESS PC Filename=M57R

* Preliminary MOSIS BSIM parameters for SPICE3:

* The following parameters were extracted from a MOSIS

* experimental 1.2 um fabrication run.

For N-channel Devices

* NM1 PM1 PY1 ML1 ML2 DU1 DU2

*PROCESS=PC1

*RUN=m57r

*WAFER=11

*OPERATOR=david & ming

*DATE=6/12/87

First Model Parameter Format

*nmos model

.MODEL PC_NM1 NMOS LEVEL=13 VFB0=

+-8.27348E-01, 1.42207E-01, 3.48523E-02

+ 7.87811E-01, 0.00000E+00, 0.00000E+00

+ 9.01356E-01,-1.96192E-01, 1.89222E-02

+ 4.83095E-02,-4.10812E-02,-2.21153E-02

+ 2.11768E-03, 3.04656E-04,-1.14155E-03

+ 4.93528E+02, 5.39503E-02, 4.54432E-01

+ 5.81155E-02, 4.95498E-02,-1.96838E-02

+-5.88405E-02, 6.06713E-01, 4.88790E-03

+ 9.22649E+00,-8.66150E+00, 9.55036E+00

+-7.95688E-04, 2.67366E-03, 3.88974E-03

+ 2.14262E-03,-7.19261E-04,-3.56119E-03

+ 2.05529E-03,-3.66841E-03, 1.86866E-03

+-1.64733E-02,-3.63561E-03, 3.59209E-02

+ 4.84793E+02, 3.14763E+02,-3.91874E+01

+-4.21265E+00,-7.97847E+00, 3.50692E+01

+-5.83990E+00, 6.64867E+01,-1.99620E+00

+-1.44106E-02, 8.14508E-02, 7.56591E-04

+ 2.30000E-02, 2.30000E+01, 5.00000E+00

+ 5.04000E-10, 5.04000E-10, 1.91000E-09

+ 1.00000E+00, 0.00000E+00, 0.00000E+00

+ 2.00000E+02, 0.00000E+00, 0.00000E+00

+ 0.00000E+00, 0.00000E+00, 0.00000E+00

+ 0.00000E+00, 0.00000E+00, 0.00000E+00

*n+ diffusion layer

+80.0,7.000E-004,4.20E-010,1.00E-008,0.700E000

+0.8000e000,0.5,0.33,0,0

PMOS Model

.MODEL PC_PM1 PMOS LEVEL=13 VFB0=

+-5.63441E-01,-1.06809E-01, 1.32967E-01

+ 7.46390E-01, 0.00000E+00, 0.00000E+00

+ 6.57533E-01, 1.94464E-01,-1.60925E-01

+-2.55036E-03, 1.14752E-01,-8.78447E-02

+-5.59772E-03, 2.50199E-02,-5.66587E-04

+ 1.73854E+02, 2.72457E-01, 6.57818E-01

+ 1.26943E-01, 4.25293E-02,-4.31672E-02

+-1.00718E-02, 1.50900E-01,-1.00228E-02

+ 1.03128E+01,-3.94500E+00, 1.87986E+00

+ 1.55874E-03, 4.80364E-03,-1.45355E-03

+ 4.20214E-04,-2.05447E-03,-7.44369E-04

+ 1.00044E-02,-4.43607E-03, 1.05796E-03

+-5.64102E-04, 1.97407E-03, 6.65336E-04

+ 1.77550E+02, 1.02937E+02,-2.94207E+01

+ 8.73183E+00, 1.51499E+00, 9.06178E-01

+ 1.11851E+00, 9.75265E+00,-1.88238E+00

+-4.70098E-05, 9.43069E-04,-9.19946E-05

+ 2.30000E-02, 2.30000E+01, 5.00000E+00

+ 1.00000E-09, 1.00000E-09, 1.91000E-09

+ 1.00000E+00, 0.00000E+00, 0.00000E+00

+ 2.00000E+02, 0.00000E+00, 0.00000E+00

+ 0.00000E+00, 0.00000E+00, 0.00000E+00

+ 0.00000E+00, 0.00000E+00, 0.00000E+00

*p+ diffusion layer

+140.0,4.0E-004,2.4E-010,1.00E-008,0.700E000

+0.8000e000,0.5,0.33,0,0

Wire Model for Poly and Metal Layers

*NOT REFERENCED BY ANY ELEMENTS IN THIS CIRCUIT,

*JUST FOR MODEL EXAMPLES.

*

.MODEL PC_PY1 R

*poly layer

+ 65.0

.MODEL PC_ML1 R

*metal layer 1

+ 0.200

$$$$$$$

.ALTER

$$$$$$$

Second Model Parameter Format

*nmos model

.MODEL PC_NM1 NMOS LEVEL=13

+ VFB0=-8.27348E-01 LVFB=1.42207E-01 WVFB=3.48523E-02

+ PHI0=7.87811E-01 LPHI=0.00000E+00 WPHI=0.00000E+00

+ K1=9.01356E-01 LK1=-1.96192E-01 WK1=1.89222E-02

+ K2=4.83095E-02 LK2=-4.10812E-02 WK2=-2.21153E-02

+ ETA0=2.11768E-03 LETA=3.04656E-04 WETA=-1.14155E-03

+ MUZ=4.93528E+02 DL0=5.39503E-02 DW0=4.54432E-01

+ U00=5.81155E-02 LU0=4.95498E-02 WU0=-1.96838E-02

+ U1=-5.88405E-02 LU1=6.06713E-01 WU1=4.88790E-03

+ X2M=9.22649E+00 LX2M=-8.66150E+00 WX2M=9.55036E+00

+ X2E=-7.95688E-04 LX2E=2.67366E-03 WX2E=3.88974E-03

+ X3E=2.14262E-03 LX3E=-7.19261E-04 WX3E=-3.56119E-03

+ X2U0=2.05529E-03 LX2U0=-3.66841E-03 WX2U0=1.86866E-03

+ X2U1=-1.64733E-02 LX2U1=-3.63561E-03 WX2U1=3.59209E-02

+ MUS=4.84793E+02 LMS=3.14763E+02 WMS=-3.91874E+01

+ X2MS=-4.21265E+00 LX2MS=-7.97847E+00 WX2MS=3.50692E+01

+ X3MS=-5.83990E+00 LX3MS=6.64867E+01 WX3MS=-1.99620E+00

+ X3U1=-1.44106E-02 LX3U1=8.14508E-02 WX3U1=7.56591E-04

+ TOXM=2.30000E-02 TEMPM=2.30000E+01 VDDM=5.00000E+00

+ CGDOM=5.04000E-10 CGSOM=5.04000E-10 CGBOM=1.91000E-09

+ XPART=1.00000E+00 DUM1=0.00000E+00 DUM2=0.00000E+00

+ N0=2.00000E+02 LN0=0.00000E+00 WN0=0.00000E+00

+ NB0=0.00000E+00 LNB=0.00000E+00 WNB=0.00000E+00

+ ND0=0.00000E+00 LND=0.00000E+00 WND=0.00000E+00

N+ Diffusion Layer
+ RSHM=80.0         CJM=7.000E-004     CJW=4.20E-010 
+ IJS=1.00E-008     PJ=0.700E000
+ PJW=0.8000E000    MJ0=0.5            MJW=0.33   
+ WDF=0             DS=0
PMOS Model
.MODEL PC_PM1 PMOS LEVEL=13 
+ VFB0=-5.63441E-01 LVFB=-1.06809E-01   WVFB=1.32967E-01
+ PHI0=7.46390E-01  LPHI=0.00000E+00    WPHI=0.00000E+00
+ K1=6.57533E-01    LK1=1.94464E-01     WK1=-1.60925E-01
+ K2=-2.55036E-03   LK2=1.14752E-01     WK2=-8.78447E-02
+ ETA0=-5.59772E-03 LETA=2.50199E-02    WETA=-5.66587E-04
+ MUZ=1.73854E+02   DL0=2.72457E-01     DW0=6.57818E-01
+ U00=1.26943E-01   LU0=4.25293E-02     WU0=-4.31672E-02
+ U1=-1.00718E-02   LU1=1.50900E-01     WU1=-1.00228E-02
+ X2M=1.03128E+01   LX2M=-3.94500E+00   WX2M=1.87986E+00
+ X2E=1.55874E-03   LX2E=4.80364E-03    WX2E=-1.45355E-03
+ X3E=4.20214E-04   LX3E=-2.05447E-03   WX3E=-7.44369E-04
+ X2U0=1.00044E-02  LX2U0=-4.43607E-03  WX2U0=1.05796E-03
+ X2U1=-5.64102E-04 LX2U1=1.97407E-03   WX2U1=6.65336E-04
+ MUS=1.77550E+02   LMS=1.02937E+02     WMS=-2.94207E+01
+ X2MS=8.73183E+00  LX2MS=1.51499E+00   WX2MS=9.06178E-01
+ X3MS=1.11851E+00  LX3MS=9.75265E+00   WX3MS=-1.88238E+00
+ X3U1=-4.70098E-05 LX3U1=9.43069E-04   WX3U1=-9.19946E-05
+ TOXM=2.30000E-02  TEMPM=2.30000E+01   VDDM=5.00000E+00
+ CGDOM=1.00000E-09 CGSOM=1.00000E-09   CGBOM=1.91000E-09
+ XPART=1.00000E+00 DUM1=0.00000E+00    DUM2=0.00000E+00
+ N0=2.00000E+02    LN0=0.00000E+00     WN0=0.00000E+00
+ NB0=0.00000E+00   LNB=0.00000E+00     WNB=0.00000E+00
+ ND0=0.00000E+00   LND=0.00000E+00     WND=0.00000E+00
*p+ diffusion layer
+ RSHM=140.0        CJM=4.0E-004        CJW=2.4E-010 
+ IJS=1.00E-008     PJ=0.700E000
+ PJW=0.8000E000    MJ0=0.5             MJW=0.33   
+ WDF=0             DS=0
Wire Model for Poly and Metal Layers

*NOT REFERENCED BY ANY ELEMENTS IN THIS CIRCUIT,

*JUST FOR MODEL EXAMPLES.

*

.MODEL PC_PY1 R

*poly layer

+ RSH=65.0

.MODEL PC_ML1 R

*metal layer 1

+ RSH=0.200

*

.END

Star-Hspice Manual - Release 2001.2 - June 2001