Using BJT Temperature Compensation Equations

This section describes how to use temperature compensation equations.

Using Energy Gap Temperature Equations

To determine energy gap for temperature compensation, use the equations:

TLEV = 0, 1 or 3

 

 

TLEV=2

 

 

Using Saturation and Beta Temperature Equations,
TLEV=0 or 2

The basic BJT temperature compensation equations for beta and the saturation currents when TLEV=0 or 2 (default is SPICE style TLEV=0):

 

 

 

 

 

The parameter XTB usually should be set to zero for TLEV=2.

 

 

 

TLEV=0, 1 or 3

 

TLEV=2

 

Using Saturation and Temperature Equations, TLEV=1

The basic BJT temperature compensation equations for beta and the saturation currents when TLEV=1:

 

 

 

 

 

 

 

 

where:

 

TLEV=0, 1, 2

The parameters IKF, IKR, and IRB are also modified as:

 

 

 

Using Saturation Temperature Equations, TLEV=3

The basic BJT temperature compensation equations for the saturation currents when TLEV=3

 

 

 

 

 

 

The parameters IKF, IKR, and IRB are also modified as:

 

 

 

The following parameters are also modified when corresponding temperature coefficients are specified, regardless of the TLEV value.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Capacitance Temperature Equations

TLEVC=0

 

 

 

where:

 

 

 

TLEVC=1

 

 

 

and contact potentials determined as:

 

 

 

TLEVC=2

 

 

 

where:

 

 

 

TLEVC=3

 

 

 

 

 

 

where TLEV= 0, 1, or 3

 

 

 

and TLEV=2

 

 

 

Using Parasitic Resistor Temperature Equations

The parasitic resistors, as a function of temperature regardless of TLEV value, are determined as:

 

 

 

 

Using BJT LEVEL=2 Temperature Equations

The model parameters of BJT LEVEL 2 model are modified for temperature compensation as:

 

 

 

Star-Hspice Manual - Release 2001.2 - June 2001