Understanding the BJT Model Statement

Syntax

.MODEL mname NPN <(> <pname1 = val1> ... <)>

or

.MODEL mname PNP <pname1 = val1> ...

mname

Model name. Elements refer to the model by this name.

NPN

Identifies an NPN transistor model

pname1

Each BJT model can include several model parameters.

PNP

Identifies a PNP transistor model

Example

.MODEL t2n2222a NPN

+ ISS= 0. XTF= 1. NS = 1.00000

+ CJS= 0. VJS= 0.50000 PTF= 0.

+ MJS= 0. EG = 1.10000 AF = 1.

+ ITF= 0.50000 VTF= 1.00000

+ BR = 40.00000 IS = 1.6339e-14 VAF= 103.40529

+ VAR= 17.77498 IKF= 1.00000

+ NE = 1.31919 IKR= 1.00000 ISC= 3.6856e-13

+ NC = 1.10024 IRB= 4.3646e-05 NF = 1.00531

+ NR = 1.00688 RBM= 1.0000e-02 RB = 71.82988

+ RC = 0.42753 RE = 3.0503e-03 MJE= 0.32339

+ MJC= 0.34700 VJE= 0.67373 VJC= 0.47372

+ TF = 9.693e-10 TR = 380.00e-9 CJE= 2.6734e-11

+ CJC= 1.4040e-11 FC = 0.95000 XCJC= 0.94518

Using BJT Basic Model Parameters

To permit the use of model parameters from earlier versions of Star-Hspice, many of the model parameters have aliases, which are included in the model parameter list in Using BJT Basic DC Model Parameters. The new name is always used on printouts, even if an alias is used in the model statement.

BJT model parameters are divided into several groups. The first group of DC model parameters includes the most basic Ebers-Moll parameters. This model is effective for modeling low-frequency large-signal characteristics.

Low-current Beta degradation effect parameters ISC, ISE, NC, and NE aid in modeling the drop in the observed Beta, caused by the following mechanisms:

Low base and emitter dopant concentrations, found in some BIMOS type technologies, use the high-current Beta degradation parameters, IKF and IKR.

Use the base-width modulation parameters, that is, early effect parameters VAF and VAR, to model high-gain, narrow-base devices. The model calculates the slope of the I-V curve for the model in the active region with VAF and VAR. If VAF and VAR are not specified, the slope in the active region is zero.

The parasitic resistor parameters RE, RB, and RC are the most frequently used second-order parameters since they replace external resistors. This simplifies the input netlist file. All of the resistances are functions of the BJT multiplier M value. The resistances are divided by M to simulate parallel resistances. The base resistance is also a function of base current, as is often the case in narrow-base technologies.

Transient model parameters for BJTs are composed of two groups: junction capacitor parameters and transit time parameters. The base-emitter junction is modeled by CJE, VJE, and MJE. The base-collector junction capacitance is modeled by CJC, VJC, and MJC. The collector-substrate junction capacitance is modeled by CJS, VJS, and MJS.

TF is the forward transit time for base charge storage. TF can be modified to account for bias, current, and phase, by XTF, VTF, ITF, and PTF. The base charge storage reverse transit time is set by TR. There are several sets of temperature equations for the BJT model parameters that you can select by setting TLEV and TLEVC.

Table 16-1: BJT Model Parameters

DC

BF, BR, IBC, IBE, IS, ISS, NF, NR, NS, VAF, VAR

beta degradation

ISC, ISE, NC, NE, IKF, IKR

geometric

SUBS, BULK

resistor

RB, RBM, RE, RC, IRB

junction capacitor

CJC, CJE, CJS, FC, MJC, MJE, MJS, VJC, VJE, VJS, XCJC

parasitic capacitance

CBCP, CBEP, CCSP

transit time

ITF, PTF, TF, VT, VTF, XTF

noise

KF, AF

Using BJT Basic DC Model Parameters

Name (Alias)

Unit

Default

Description

BF (BFM)

 

100.0

Ideal maximum forward Beta

BR (BRM)

 

1.0

Ideal maximum reverse Beta

BULK (NSUB)

 

0.0

Sets the bulk node to a global node name. A substrate terminal node name (ns) in the element statement overrides BULK.

IBC

amp

0.0

Reverse saturation current between base and collector. If both IBE and IBC are specified, Star-Hspice uses them in place of IS to calculate DC current and conductance; otherwise it uses IS.

IBCeff = IBC · AREAB · M

AREAC replaces AREAB, depending on vertical or lateral geometry.

EXPLI

amp

1e15

Current explosion model parameter. The PN junction characteristics above the explosion current area linear, with the slope at the explosion point. This speeds up simulation and improves convergence.

EXPLIeff = EXPLI · AREAeff

IBE

amp

0.0

Reverse saturation current between base and emitter. If both IBE and IBC are specified, Star-Hspice uses them in place of IS to calculate DC current and conductance; otherwise it uses IS.

IBEeff = IBE · AREA · M

IS

amp

1.0e-16

Transport saturation current. If both IBE and IBC are specified, Star-Hspice uses them in place of IS to calculate DC current and conductance; otherwise it uses IS.

ISeff = IS · AREA · M

ISS

amp

0.0

Reverse saturation current bulk-to-collector or bulk-to-base, depending on vertical or lateral geometry selection

SSeff = ISS · AREA · M

LEVEL

 

1.0

Model selector

NF

 

1.0

Forward current emission coefficient

NR

 

1.0

Reverse current emission coefficient

NS

 

1.0

Substrate current emission coefficient

SUBS

 

 

Substrate connection selector:
+1 for vertical geometry, -1 for lateral geometry
default=1 for NPN, default=-1 for PNP

UPDATE

 

0

UPDATE = 1 selects alternate base charge equation

Using Low-Current Beta Degradation Effect Parameters

Name (Alias)

Unit

Default

Description

ISC (C4, JLC)

amp

0.0

Base-collector leakage saturation current. If ISC is greater than 1e-4, then:

ISC = IS · ISC

otherwise:

ISCeff = ISC · AREAB · M

AREAC replaces AREAB, depending on vertical or lateral geometry.

ISE (C2, JLE)

amp

0.0

Base-emitter leakage saturation current. If ISE is greater than
1e-4, then:

ISE = IS · ISE

otherwise:

ISEeff = ISE · AREA · M

NC (NLC)

 

2.0

Base-collector leakage emission coefficient

NE (NLE)

 

1.5

Base-emitter leakage emission coefficient

Using Base Width Modulation Parameters

Name (Alias)

Unit

Default

Description

VAF (VA, VBF)

V

0.0

Forward early voltage. Use zero to indicate an infinite value.

VAR (VB, VRB, BV)

V

0.0

Reverse early voltage. Use zero to indicate an infinite value.

Using High-Current Beta Degradation Effect Parameters

Name (Alias)

Unit

Default

Description

IKF (IK, JBF)

amp

0.0

Corner for forward Beta high-current roll-off. Use zero to indicate an infinite value.

IKFeff = IKF · AREA · M

IKR (JBR)

amp

0.0

Corner for reverse Beta high-current roll-off. Use zero to indicate an infinite value

IKReff = IKR · AREA · M

NKF

 

0.5

Exponent for high-current Beta roll-off

Using Parasitic Resistance Parameters

Name (Alias)

Unit

Default

Description

IRB (JRB, IOB)

amp

0.0

Base current, where base resistance falls half-way to RBM. Use zero to indicate an infinite value.

IRBeff = IRB · AREA · M

RB

ohm

0.0

Base resistance

RBeff = RB / (AREA · M)

RBM

ohm

RB

Minimum high-current base resistance

RBMeff = RBM / (AREA · M)

RE

ohm

0.0

Emitter resistance

REeff = RE / (AREA · M)

RC

ohm

0.0

Collector resistance

RCeff = RC / (AREA · M)

Using Junction Capacitor Parameters

Name (Alias)

Unit

Default

Description

CJC

F

0.0

Base-collector zero-bias depletion capacitance

Vertical: CJCeff = CJC · AREAB · M
Lateral: CJCeff = CJC · AREAC · M

CJE

F

0.0

Base-emitter zero-bias depletion capacitance (vertical and lateral):

CJEeff = CJE · AREA · M

CJS (CCS, CSUB)

F

0.0

Zero-bias collector substrate capacitance

Vertical: CJSeff = CJS · AREAC · M
Lateral: CJSeff = CJS · AREAB · M

FC

 

0.5

Coefficient for forward bias depletion capacitance formula for DCAP=1

DCAP Default=2 and FC is ignored

MJC (MC)

 

0.33

Base-collector junction exponent (grading factor)

MJE (ME)

 

0.33

Base-emitter junction exponent (grading factor)

MJS(ESUB)

 

0.5

Substrate junction exponent (grading factor)

VJC (PC)

V

0.75

Base-collector built-in potential

VJE (PE)

V

0.75

Base-emitter built-in potential

VJS (PSUB)

V

0.75

Substrate junction built in potential

XCJC (CDIS)

 

1.0

Internal base fraction of base-collector depletion capacitance

Using Parasitic Capacitances Parameters

Name

Unit

Default

Description

CBCP

F

0.0

External base-collector constant capacitance

CBCPeff = CBCP · AREA · M

CBEP

F

0.0

External base-emitter constant capacitance

CBEPeff = CBEP · AREA · M

CCSP

F

0.0

External collector substrate constant capacitance (vertical) or base substrate (lateral)

CCSPeff = CCSP · AREA · M

Using Transit Time Parameters

Name (Alias)

Unit

Default

Description

ITF (JTF)

amp

0.0

TF high-current parameter

ITFeff = ITF · AREA · M

PTF

x

0.0

Frequency multiplier to determine excess phase

TF

s

0.0

Base forward transit time

TR

s

0.0

Base reverse transit time

VTF

V

0.0

TF base-collector voltage dependence coefficient. Zero indicates an infinite value.

XTF

 

0.0

TF bias dependence coefficient

Using Noise Parameters

Name

Unit

Default

Description

AF

 

1.0

Flicker-noise exponent

KF

 

0.0

Flicker-noise coefficient

Using BJT LEVEL=2 Model Parameters

Name

Unit

Default

Description

BRS

 

1.0

Reverse beta for substrate BJT.

GAMMA

 

0.0

Epitaxial doping factor,

GAMMA = (2 · ni / n) 2

where n is epitaxial impurity concentration

NEPI

 

1.0

Emission coefficient

QCO

Coul

0.0

Epitaxial charge factor

Vertical: QCOeff=QCO · AREAB · M
Lateral: QCOeff=QCO · AREAC · M

RC

ohm

0.0

Resistance of the epitaxial region under equilibrium conditions

RCeff=RC/(AREA · M)

VO

V

0.0

Carrier velocity saturation voltage. Use zero to indicate an infinite value.

Handling BJT Model Temperature Effects

Several temperature parameters control derating of the BJT model parameters. They include temperature parameters for junction capacitance, Beta degradation (DC), and base modulation (Early effect) among others.

Table 16-2: BJT Temperature Parameters

Function

Parameter

base modulation

TVAF1, TVAF2, TVAR1, TVAR2

capacitor

CTC, CTE, CTS

capacitor potentials

TVJC, TVJE, TVJS

DC

TBF1, TBF2, TBR1, TBR2, TIKF1, TIKF2, TIKR1, TIKR2, TIRB1, TIRB2, TISC1, TISC2, TIS1, TIS2, TISE1, TISE2, TISS1, TISS2, XTB, XTI

emission coefficients

TNC1, TNC2, TNE1, TNE2, TNF1, TNF2, TNR1, TNR2, TNS1, TNS2

energy gap

EG, GAP1, GAP2

equation selectors

TLEV, TLEVC

grading

MJC, MJE, MJS, TMJC1, TMJC2, TMJE1, TMJE2, TMJS1, TMJS2

resistors

TRB1, TRB2, TRC1, TRC2, TRE1, TRE2, TRM1, TRM2

transit time

TTF1, TTF2, TTR1, TTR2

Using Temperature Effect Parameters

Name (Alias)

Unit

Default

Description

BEX

 

2.42

VO temperature exponent (LEVEL 2 only)

BEXV

 

1.90

RC temperature exponent (LEVEL 2 only)

CTC

1/°

0.0

Temperature coefficient for zero-bias base collector capacitance. TLEVC=1 enables CTC to override the default Star-Hspice temperature compensation.

CTE

1/°

0.0

Temperature coefficient for zero-bias base emitter capacitance. TLEVC=1 enables CTE to override the default Star-Hspice temperature compensation.

CTS

1/°

0.0

Temperature coefficient for zero-bias substrate capacitance. TLEVC=1 enables CTS to override the default Star-Hspice temperature compensation.

EG

eV

 

Energy gap for pn junction
for TLEV=0 or 1, default=1.11;
for TLEV=2, default=1.16

1.17 - silicon
0.69 - Schottky barrier diode
0.67 - germanium
1.52 - gallium arsenide

GAP1

eV/°

7.02e-4

First bandgap correction factor (from Sze, alpha term)

7.02e-4 - silicon
4.73e-4 - silicon
4.56e-4 - germanium
5.41e-4 - gallium arsenide

GAP2

x

1108

Second bandgap correction factor (from Sze, beta term)

1108 - silicon
636 - silicon
210 - germanium
204 - gallium arsenide

MJC (MC)

 

0.33

Base-collector junction exponent (grading factor)

MJE (ME)

 

0.33

Base-emitter junction exponent (grading factor)

MJS (ESUB)

 

0.5

Substrate junction exponent (grading factor)

TBF1

1/°

0.0

First-order temperature coefficient for BF

TBF2

1/°2

0.0

Second-order temperature coefficient for BF

TBR1

1/°

0.0

First-order temperature coefficient for BR

TBR2

1/°2

0.0

Second-order temperature coefficient for BR

TIKF1

1/°

0.0

First-order temperature coefficient for IKF

TIKF2

1/°2

0.0

Second-order temperature coefficient for IKF

TIKR1

1/°

0.0

First-order temperature coefficient for IKR

TIKR2

1/°2

 

Second-order temperature coefficient for IKR

TIRB1

1/°

0.0

First-order temperature coefficient for IRB

TIRB2

1/°2

0.0

Second-order temperature coefficient for IRB

TISC1

1/°

0.0

First-order temperature coefficient for ISC
TLEV=3 enables TISC1.

TISC2

1/°2

0.0

Second-order temperature coefficient for ISC
TLEV=3 enables TISC2.

TIS1

1/°

0.0

First-order temperature coefficient for IS or IBE and IBC TLEV=3 enables TIS1.

TIS2

1/°2

0.0

Second-order temperature coefficient for IS or IBE and IBC TLEV=3 enables TIS2.

TISE1

1/°

0.0

First-order temperature coefficient for ISE
TLEV=3 enables TISE1.

TISE2

1/°2

0.0

Second-order temperature coefficient for ISE.
TLEV=3 enables TISE2.

TISS1

1/°

0.0

First-order temperature coefficient for ISS
TLEV=3 enables TISS1.

TISS2

1/°2

0.0

Second-order temperature coefficient for ISS
TLEV=3 enables TISS2.

TITF1

 

 

First-order temperature coefficient for ITF

TITF2

 

 

Second-order temperature coefficient for ITF

TLEV

 

1

Temperature equation level selector for BJTs (interacts with TLEVC)

TLEVC

 

1

Temperature equation level selector for BJTs, junction capacitances and potentials (interacts with TLEV)

TMJC1

1/°

0.0

First-order temperature coefficient for MJC

TMJC2

1/°2

0.0

Second-order temperature coefficient for MJC

TMJE1

1/°

0.0

First order temperature coefficient for MJE

TMJE2

1/°2

0.0

Second-order temperature coefficient for MJE

TMJS1

1/°

0.0

First-order temperature coefficient for MJS

TMJS2

1/°2

0.0

Second-order temperature coefficient for MJS

TNC1

1/°

0.0

First-order temperature coefficient for NC

TNC2

 

0.0

Second-order temperature coefficient for NC

TNE1

1/°

0.0

First-order temperature coefficient for NE

TNE2

1/°2

0.0

Second-order temperature coefficient for NE

TNF1

1/°

0.0

First-order temperature coefficient for NF

TNF2

1/°2

0.0

Second-order temperature coefficient for NF

TNR1

1/°

0.0

First-order temperature coefficient for NR

TNR2

1/°2

0.0

Second-order temperature coefficient for NR

TNS1

1/°

0.0

First-order temperature coefficient for NS

TNS2

1/°2

0.0

Second-order temperature coefficient for NS

TRB1 (TRB)

1/°

0.0

First-order temperature coefficient for RB

TRB2

1/°2

0.0

Second-order temperature coefficient for RB

TRC1 (TRC)

1/°

0.0

First-order temperature coefficient for RC

TRC2

1/°2

0.0

Second-order temperature coefficient for RC

TRE1 (TRE)

1/°

0.0

First-order temperature coefficient for RE

TRE2

1/°2

0.0

Second-order temperature coefficient for RE

TRM1

1/°

TRB1

Firs-order temperature coefficient for RBM

TRM2

1/°2

TRB2

Second-order temperature coefficient for RBM

TTF1

1/°

0.0

First-order temperature coefficient for TF

TTF2

1/° 2

0.0

Second-order temperature coefficient for TF

TTR1

1/°

0.0

First-order temperature coefficient for TR

TTR2

1/° 2

0.0

Second-order temperature coefficient for TR

TVAF1

1/°

0.0

First-order temperature coefficient for VAF

TVAF2

1/° 2

0.0

Second-order temperature coefficient for VAF

TVAR1

1/°

0.0

First-order temperature coefficient for VAR

TVAR2

1/° 2

0.0

Second-order temperature coefficient for VAR

TVJC

V/°

0.0

Temperature coefficient for VJC. TLEVC=1 or 2 enables TVJC to override the default Star Hspice temperature compensation.

TVJE

V/°

0.0

Temperature coefficient for VJE. TLEVC=1 or 2 enables TVJE to override the default Star Hspice temperature compensation.

TVJS

V/°

0.0

Temperature coefficient for VJS. TLEVC=1 or 2 enables TVJS to override the default Star Hspice temperature compensation.

XTB (TB, TCB)

 

0.0

Forward and reverse Beta temperature exponent (used with TLEV=0, 1 or 2)

XTI

 

3.0

Saturation current temperature exponent. Use XTI = 3.0 for silicon diffused junction. Set XTI = 2.0 for Schottky barrier diode.

Star-Hspice Manual - Release 2001.2 - June 2001