ERC Retreat Stanford: New Chemistries & Tools for scCO₂ Processing of Thin Films

Overview of Dual Damascene Cu/Low-k Interconnect

<u>P. Josh Wolf^{1,4}</u> - Program Manager, Interconnect Div. josh.wolf@sematech.org

¹International Sematech, 2706 Montopolis Drive, Austin TX 78741; ²Intel, Portland, OR

Presentation Outline

Interconnect

- Why ultra low-k?
- Properties and challenges of porous low-k materials
- Dual damascene structure
- Dual damascene process flow
- Low-k integration issues & potential solutions
- Conclusion

Interconnect Structure

130nm – 6LM

90nm – 9LM

SEM Cross-sections Courtesy of AMD

Why Cu/Low-k?....R*C Product

14 August 2003 - 4

THE PROBLEM IS RC - HOW FAR CAN YOU GO?

A Theoretical Ideal

Aluminum	าum (alloy) >>> Copper,				uction of
Resistivity	3.2	1.	8	1.8 x	
SiO2 >>	>>>>>	>Low-K>>	>>> Air,	C red	luction of
Dielectric Constant	4.2	2.1	1.0	2.0x 4.2 x	- Low-K - Air
	RC Reduction of				
	7.5 – Cu/Air				
	3.5 – Cu/Low-k				

Properties of Porous Ultra Low-k Materials vs. Oxide

Property	Low-k	Oxide
Density (g/cm³)	1.03	2.2
Dielectric Cons.	~1.9-2.5	4.1
Modulus (GPa)	~3-9	55-70
Hardness (GPa)	~0.3-0.8	3.5
CTE (ppm/K)	~10-17	0.6
Porosity (est.)	~35-65%	NA
Avg. Pore Size	<2.0-10nm	NA
Thermal Conductivity (W/m K)	0.26	1.4

Low-k – Integration Challenges

Low k voiding

Cu diffusion / barrier integrity

Large pore structure

Dielectric cracking

A DUAL DAMASCENE 'UNIT' STRUCTURE

Dual Damascene Dual Top Hard Mask Process

M2 Hard Mask Pattern

- 1. Low-k CVD or SOD
- 2. Etch stop / barrier CVD
- 3. Hard Mask SiO₂ & SiC
- 4. Conventional Litho

Post HM Open Etch & Ash

- 1. Define Trench
- w/ etch process
- 2. Ash resist
- 3. No low-k exp to ash process
- 4. Allows litho rework at Via

VIA Pattern & Initial Bottom Mask Open

- 1. Litho Via on hard mask
- 2. Etch through hard mask

Low -k VIA Etch

- 1. Etch low-k @ M2
- 2. Etch Trench Stop
- 2. Leaves M2 mask
- 3. Some low-k exposure to Ash

Pot. Low-k Damage 1. Via Structure

Dual Damascene Dual Top Hard Mask Process

Ash & Bottom Hard Mask Open

1. in-situ ash (in etch tool) 2. Open (etch) bottom HM

Pot. Low-k Damage 1. Via Structure

VIA & M2 Simultaneous Etch

- 1. Drive trench down
- 2. Complete Via
- 3. Need to leave etch stop intact

Pot. Low-k Damage

- 1. Via Structure
- 2. Trench
- 3. Etch stop integrity

Cu Barrier Open and Via Cleans

- 1. Cu open
- 2. Clean to remove etch & ash residue

Pot. Low-k Damage

- 1. Moisture uptake
- 2. Etch residue uptake
- 3. Cu oxidation
- 4. All exposed low-k

Dual Damascene Dual Top Hard Mask Process

Barrier Seed (pore sealing)

- 1. Ar sputter etch
- 2. ALD / CVD material Ta, TaN, others
- 3. Seal damaged pores

Pot. Low-k Damage 1. Discontinuity 2. Sputter Etch

Cu Plate

1. Fills Trench & Via simultaneously

Pot. Issues 1. Fill uniformity 2. Key Holes

CMP

1. Removes Cu & Hard Mask 2. Post CMP cleans

Pot. Issues 1. Uniformity 2. Pressure – damage low-k 3. Cu corrosion

Integration Schemes for Dual Damascene

Each scheme has i own integration issues and challenges.

There are also man variations on each scheme.

	Self Aligned	Via First	Trench First	Top Hardmask
me has its ation I				
s. also many on each				
Issues	AlignmentLitho rework	•BARC "fencing" •PR poison •Litho rework	•Litho DOF •BARC fill •PR poison •Litho rework	 High overall k_{eff} Etch Resist selectivity Litho Overlay

Simple So Far.....Integration Issues

Issues

- Etch by-products are deposited on exposed low-k films
- Aqueous processes can drive in contaminates and modify low-k structure
- Etch, ash, and cleans difficult to control pores, soft material – CD / uniformity, process selectivity, etc.
- CMP processes put (shearing) forces on soft and weak low-k structures / materials
- Discontinuous barriers can allow Cu diffusion / failure
- Specific integration issues to each low-k

Resist Poisoning

- Resist poisoning occurs when nitrogen containing chemistries or films can outgas (NH₃) into resist
 - Use of N_2/H_2 ash processes
 - Exposure of SiCN barrier during Via First Etch Scheme
 - Use of Nitrogen containing films in other areas of stack

Resist-poisoning (caused by trapped amines/ NH₃)

Low-k Voiding

- Low-k voids occurs during post Cu plating anneal
- Wider low-k spacings exhibit less voiding

Traditional microwave oxygen ashes

- Isotropic ash processes remove also C from porous low-k film
- Makes low-k hydrophilic

Assumed low-k voiding mechanism

Fluorine captured in pores of low-k

- Primary source is etch process
- Ash releases fluorine from resist/ polymers
- Incomplete removal in post ash wet clean

Low-k film becomes hydrophilic

- Ash & etch chemistries can deplete Carbon
- Promotes moisture uptake at sidewalls cleans
- Discontinuity in barrier/ seed layer Cu plate
- HF formation

HF reaction with low-k, SiN_x

- Anneal starts HF reaction with low-k
- 'Sub-micron pressure cooker'
- Mechanically induced stress from copper lines
- SiCN not attacked

Cu Diffusion / Depletion

Cu diffuses out of structures

- Barrier discontinuities
- Moisture / diffusion gradients
- Electro-thermal stress

Structure fails from Cu depletion

Open Via due to Cu depletion

TEM of Cu diffusion into low-k

Dielectric Cracking

- CMP "final straw"
 - Structural / compound changes to low-k during etch, ash, cleans
 - Stresses from CMP "wiggle" structures

Solutions

Low-k voiding

- Implement a "pore sealing" process
 - prevent contaminants & moisture from entering low-k
- Implement a cleans process w/ restoration
 - remove contaminants & restore C(H3)
- Minimize aqueous treatments
- Novel plasma, strip and cleans

Dielectric Cracking

- Modulated by low-k damage & CMP force
- Restore low-k properties (cleans)

Cu Diffusion / Depletion

- Advanced barriers
- Novel liners

Conclusions

Low-k are difficult materials to integrate

- Multiple integration approaches, all have pros & cons
- Specific issues to different low-k
 - Density & porosity fluctuations by depth
 - Organic materials behave like photo-resist
- Require advance stripping, cleaning, metalization & CMP

Need to minimize or restore low-k damage

- Neutral beam plasmas
- Ion beams for stripping and pore sealing
- Restorative cleans processes scCO₂ w/ HMDS
- Advanced barriers and metalization processes
- Pore sealers sacrificial or permanent

