

# TSMC Design Services: Bringing Your Products to Market Faster





## **Intense Design Challenges**





Fall 2003

3 Fall 2003

© 2003 TSMC, Ltd



## **Enabling Time to Volume**



# t

## **Extensive Portfolio of Alliances**

- Foundation: EDA Alliance
  - Design Rule related: DRC, LVS
  - Spice Model related: Spice, RCX
- Methodology: EDA Alliance
  - Digital Reference Flow
    - Four generations of quality delivery
  - RF/MS Design Kit
    - Foundry industry's first and broadest node coverage
- Design Assistance:
  - TSMC Implementation Service
  - 3rd-Party Implementation Service
  - Silicon Debug and Repair Service



© 2003 TSMC, Ltd

Empowering Innovation<sup>s™</sup>



Fall 2003 5





BIMS Fall 2003

© 2003 TSMC, Ltd





BIMS Fall <u>2003</u>

8

Empowering Innovation<sup>s™</sup>

© 2003 TSMC, Ltd



# **Foundation Data Quality**

## **Extraction Model**

## Interconnect Model

- Realistic Corner Model
  - Reflects combination of multi-layer statistical corners
- Performs silicon correlation with commercial tools
- RC Accuracy enhancement
  - Model with metal-thickness
  - 90 nanometer enabled





© 2003 TSMC, Ltd

BIMS Fall 2003

9



Empowering Innovation© 2003 TSMC, LtdFall 200310



## Industry's Most Comprehensive Flow

- Four consecutive quality deliveries
- Each release addresses new design challenges
- All releases are backward compatible



11





## **Dual-Track Reference Flow**

- Expands customer support through multiple major vendors coverage
- Responds to customers' feedback



#### Note: TSMC Customer Base Coverage (physical implementation)





# Multi-Vt Solution for Power Optimization







# **Power/Speed Optimization Example**

- Design Case: **ARM** RISC Processor
- Technology: TSMC 90 nanometer

| Caso     | Powe    | er (mA) | Frequency | Cell | Cell Distribution |      |  |
|----------|---------|---------|-----------|------|-------------------|------|--|
| Case     | Leakage | Dynamic | (MHz)     | HVT  | HVT               | HVT  |  |
| LVT      | 21.6    | 123.8   | 360       |      |                   | 100% |  |
| NVT      | 3.6     | 92.9    | 280       |      | 100%              |      |  |
| HVT      | 1.3     | 90.7    | 200       | 100% |                   |      |  |
|          |         |         |           |      |                   |      |  |
| N/L VT   | 10.5    | 106.2   | 360       |      | 72%               | 28%  |  |
| H/N/L VT | 9.7     | 105.5   | 360       | 43%  | 27%               | 28%  |  |
| H/N VT   | 2.2     | 91.5    | 280       | 73%  | 27%               |      |  |

BIMS Fall 2003

#### Empowering Innovation<sup>sм</sup>



Empowering Innovation<sup>™</sup>

Fall 2003

15

© 2003 TSMC, Ltd



Accurate SI Analysis.

considering In-die Process **Crosstalk Analysis** Variation. **STA** Yes Violation? No **Physical Verification** 



# Demonstration of SI and Timing Closure

- TSMC 0.13-micron technology
- Two million-gate design

|                | Number of glitch<br>violations | Number of timing violations |
|----------------|--------------------------------|-----------------------------|
| 1st Iteration  | 1437                           | 622                         |
| 2nd Iteration  | 116                            | 112                         |
| 3rd Iteration  | 18                             | 40                          |
| Final Clean-up | 0                              | 0                           |

 Achieve both SI and timing closure with Reference Flow 4.0



## **DFM (Design for More?)**

- How can a chip fail? How to avoid failures?
  - During design implementation (DFA Design for Accuracy)
    - Design Spec
      - Functional error (Logic function verification)
      - Electrical error (Timing, power timing closure, power analysis)
    - Silicon technology spec
      - Physical error (rule -- DRC check)
      - Circuit error (silicon model, SPICE simulation)
  - During manufacturing (DFM Design for Manufacturability)
    - Mask/OPC induced
    - Process steps induced
    - Material induced
  - During usage (DFR Design for Reliability)
    - Time induced (electron-migration, wire-heating)
    - Situational signal induced (cross-talk delay and glitch)
    - Environment induced (temperature, shock)

BIMS Fall 2003

Empowering Innovation© 2003 TSMC, LtdFall 200317



Fall 2003

## **Design for Accuracy**



DFA (increase accuracy; bring out best performance)

- Length of Defusion (LOD)
  - STI stress effect
  - Function of length
  - BSIM3 & BSIM4 support
  - ADS, Eldo, Hspice, Spectre
- Metal thickness/width modeling
  - RC accuracy
  - Corner model
- IR Drop
  - Capacitance calculation
  - De-coupling cell insertion
- Cross-talk
  - Delay, noise or glitches
  - SI design closure
    - Prevention
    - Analysis
    - Repair



Empowering Innovation<sup>s™</sup>

Fall 2003

18

© 2003 TSMC, Ltd





# **DFM (Design for Manufacturability)**





Fall 2003

## **DFR (Design for Reliability)** DFR (avoid failure in use; increase MTBF)

Fall 2003

20

- Electro-migration
  - Power EM
    - Power mesh
    - Wire tapering
  - Signal EM
    - Multiple via insertion
- Cross-talk
  - Delay, noise or glitches
  - SI design closure
    - Prevention
    - Analysis
    - Repair
- Hot electron
  - Safe IR control design practice
- Self-heating wire
  - Safe power/clock mesh design practice<sup>Empowering Innovation™</sup> © 2003 TSMC, Ltd







Fall 2003

21



## **Flip-Chip Capability**

- RDL Flow (available)
  - Silicon proven flow on several customer chips.
- Area Array Flow (under development)
  - Cluster approach using TSMC developed flip chip I/Os
  - Silicon validated on internal test chip
  - Fine tuned for new I/O cells (better structure)







Fall 2003

## PDK for High Quality MS/RF Designs





## **TSMC PDK Device List**





| Methodology |                    |
|-------------|--------------------|
| Monte-Carlo |                    |
|             | Empowering Innovat |

SM

Fall 2003

© 2003 TSMC, Ltd

23



© 2003 TSMC, Ltd

24 Fall 2003

# **TSMC In-house Implementation Service**

## Design & EDA Expertise

- Birth place of TSMC reference flows
- In-house library, I/O & IP development
- Pioneering tape out of advanced technologies

# Silicon Expertise Device characterization Silicon correlation

Empowering Innovation<sup>s™</sup>

Fall 2003

25

© 2003 TSMC, Ltd

## Full Service Expertise

Turn-key service
 Key customer driven

Product engineering







## **DCA Success Story - Consumer**







## **QThink Customer Design Success**

#### Atsana J2210 Media Processor

Ideally suited to video and image encoding and decoding applications that are reliant on a low power, low cost integrated processing solution. Applications include:

- Wireless Video Phones
- Camera Accessory Modules
- Wireless PDAs
- Wireless PC/ Network Cameras

"We chose QThink because our project team found that they offered a solid solution with a flexible interface that would allow customization of some areas of the design. They were one of the few that had true 0.13u tape-out experience along with strong skills in the generation and integration of custom macros, and that gave us good confidence that the project would be successful."

> Richard Bériault Director of Engineering Atsana Semiconductor



"Fabrication"

- FIRST-PASS SILICON SUCCESS!
- TECHNOLOGY: 0.13 µm CMOS process, 100 MHz operating frequency
- APPLICATION: Array Processor for parallel operations, ARM922T<sup>™</sup> for host and high-level instructions
- PACKAGE: 180 pin CABGA
- POWER: 1.2V Core and 2.5/3.3 V I/Os, Multiple Power Modes



## **DCA Facilitates Customer Success**





Chip Photomicrograph of Philips Semiconductors' EDAC 2002 award winner

Nexperia-based Home Entertainment Engine pnx8526

*"Philips Semiconductors selected Cadence Design Foundry to join Philips existing design capability in a design partnership to implement the pnx8526 product.* 

The combined efforts of both teams resulted in an essentially first silicon success product that met the end customer's aggressive production IC availability requirements"

Wout Bijker Vice-President, Business Line Broadband Home Servers Philips Semiconductors

- 5 Million Gates
- 778Kbits of Sram (232 instances)
- 0.13 um TSMC (1P8M + RDL)
- 158MHz core clock speed, 56 domains
- 150MHz Processor, 200MHz DSP
- Complex Analog functions.
- 8.6mm x 8.2mm
- 367 I/Os and Power
- Wirebond, BGA
- Power consumption 2.6W

#### First Silicon Success®

© 2003 TSMC, Ltd

#### Empowering Innovation<sup>™</sup>

Fall 2003

29



Fall 2003

## IC Validation Alliance – Bridging The Gap Between Prototype & Volume



SZUUS I SIVIC, LIU

Fall 2003



# IC Validation - Business Model & Program Snap Shot

- The business model you need from
  - Guaranteed localization of failure; no service charge if failure is not localized
  - Project based pricing; remove the time and materials risk
- 28 IC validation projects completed in the program's first 14 months

| Technology    | 0.13 μm | 0.18 μm | 0.25 μm | 0.35 μm |
|---------------|---------|---------|---------|---------|
| # of Projects | 13      | 13      | 1       | 1       |

© 2003 TSMC, Ltd

Fall 2003

31

- 8 more projects underway
- Covering computer, consumer and communication applications
   Empowering Innovation





## **Time-to-Design Start**

High quality, highly consistent foundation data
DRC, LVS, RCX, SPICE

## **Time-to-Tapeout**

- Robust and state-of-the-art methodology support
  - Four generations of Reference Flow
  - Expanded PDK for RF/MS design needs
- Most comprehensive 3rd-party and in-house design services portfolio

## **Time-to-Volume**

- Flexible service business models
- Safety net provided through Validation Service







## **TSMC Design Services:** Bringing Your Products to Market Faster

Empowering Innovation© 2003 TSMC, LtdFall 200333



## Reference





## A Complete Design Service Package

| Reference<br>Flows                                                       |                     |  |  |
|--------------------------------------------------------------------------|---------------------|--|--|
| Reference <sup>sm</sup><br>Flow 4.0<br>The nanometer design flow for SoC |                     |  |  |
| Cadence,<br>Mentor,                                                      | Synopsys<br>Syntest |  |  |
|                                                                          |                     |  |  |
| DRC                                                                      |                     |  |  |
| Cadence                                                                  | Assura              |  |  |
|                                                                          | Diva                |  |  |
|                                                                          | Dracula             |  |  |
| Mentor                                                                   | Calibre             |  |  |
| Synopsys                                                                 | Hercules            |  |  |
|                                                                          |                     |  |  |
| Sp                                                                       | ICe                 |  |  |
| Agilent                                                                  | ADS                 |  |  |
| Cadence                                                                  | Spectre             |  |  |
| Mentor                                                                   | Eldo                |  |  |
|                                                                          |                     |  |  |

| Mixed-Sig /RF |
|---------------|
| Design Kits   |

| Cadence | PDK |
|---------|-----|
| Mentor* | ADK |

| LVS                |                           |  |
|--------------------|---------------------------|--|
| Cadence            | Assura<br>Diva<br>Dracula |  |
| Mentor<br>Synopsys | Calibre<br>Hercules       |  |



| Application |
|-------------|
| Notes       |
|             |

Usage Guideline etc.

| RCX                |  |  |  |
|--------------------|--|--|--|
| Assura             |  |  |  |
| Fire&Ice(QX)       |  |  |  |
| HyperExtract       |  |  |  |
| Nautilus           |  |  |  |
| xCalibre           |  |  |  |
| Columbus           |  |  |  |
| Arcadia            |  |  |  |
| <b>Raphael NES</b> |  |  |  |
| Star RC(XT)        |  |  |  |
|                    |  |  |  |

| Substrate |                       |  |
|-----------|-----------------------|--|
| Cadence   | Substrate-<br>Storm** |  |
|           |                       |  |

#### Empowering Innovation<sup>SM</sup> © 2003 TSMC, Ltd Fall 2003 35

BIMS Fall 2003

\* In progress

\*\* Upon request



BIMS Fall 2003

## **EDA Alliance**

World Leading Design Foundation and Design Methodology

| Methodology                                                                                          |                   |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Reference Flow                                                                                       | Analog Design Kit |  |  |  |
| Dual implementation tracks Enabling<br>direct manufacturability into TSMC's<br>advanced technologies |                   |  |  |  |
|                                                                                                      |                   |  |  |  |

### Foundation

| DRC          | LVS                     | SPICE    | RCX           | Substrate       |
|--------------|-------------------------|----------|---------------|-----------------|
| Double-blind | Matches device (spice), | Industry | Always        | Advanced noise  |
| Quality      | layers (design rule)    | leading  | calibrated to | analysis for RF |
| Assurance    | and application notes   | models   | silicon       | design          |







BIMS Fall 2003

Empowering Innovation© 2003 TSMC, LtdFall 200337

## **Current Design Center Alliance**

#### The Most Extensive Design Center Portfolio in Foundry Industry



#### **Bring Multiple Choices to Customers !**

BIMS Fall 2003

\* New additions

Empowering Innovation<sup>SM</sup> © 2003 TSMC, Ltd Fall 2003 38