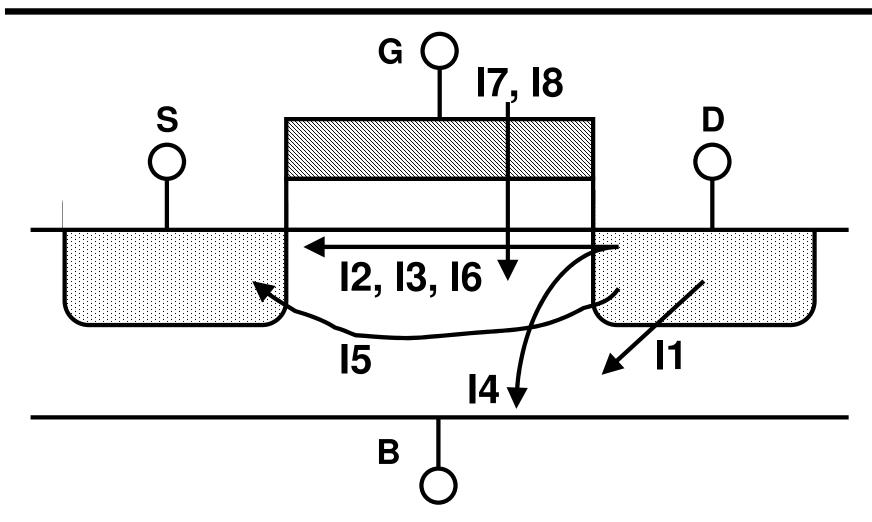
EEC 2890 Lecture #14: Leakage 2

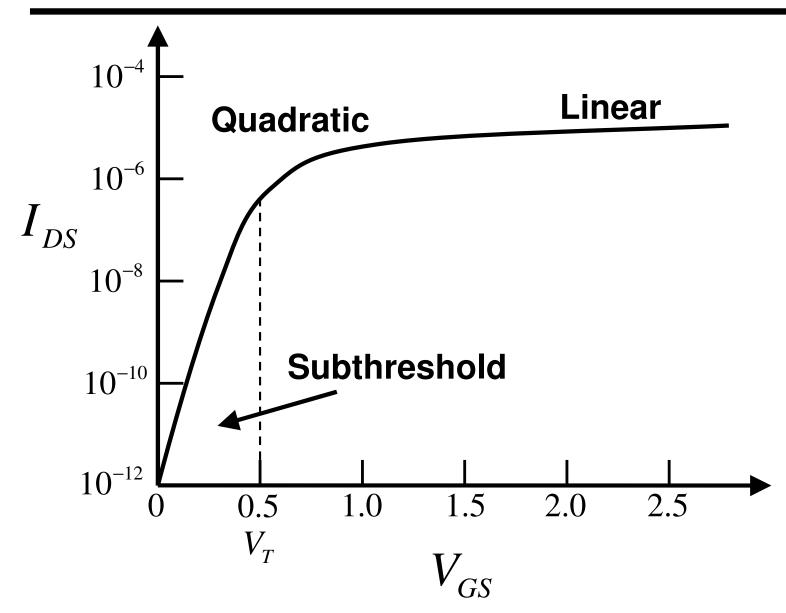
Rajeevan Amirtharajah University of California, Davis


Announcements

- Midterm Results:
 - Class Average: 66
 - Std. Deviation: 13.4
 - High Score: 89
- Rough Curve:
 - A > 66
 - 66 >= B > 46
 - -46 > C, D, F

Transistor Leakage Mechanisms

- 1. pn Reverse Bias Current (I1)
- 2. Subthreshold (Weak Inversion) (I2)
- 3. Drain Induced Barrier Lowering (I3)
- 4. Gate Induced Drain Leakage (I4)
- 5. Punchthrough (I5)
- 6. Narrow Width Effect (I6)
- 7. Gate Oxide Tunneling (I7)
- 8. Hot Carrier Injection (I8)


Leakage Currents in Deep Submicron

pn Reverse Bias Current (I1)

- Reverse-biased pn junction current has two main components
 - Minority carrier drift near edge of depletion region
 - Electron-hole pair generation in depletion region of reverse-biased junction
 - If both n and p regions doped heavily, Zener tunneling may also be present
- In MOSFET, additional leakage can occur
 - Gated diode device action (gate overlap of drain-well pn junctions)
 - Carrier generation in drain-well depletion regions influenced by gate
- Function of junction area, doping concentration
- Minimal contributor to total off current

Drain Current vs. Gate-Source Voltage

$$I_{D} = I_{S} e^{\frac{V_{GS}}{n^{kT/q}}} \left(1 - e^{-\frac{V_{DS}}{kT/q}}\right) \left(1 + \lambda V_{DS}\right)$$

- I_s and n are empirical parameters
- Typically, $n \ge 1$ often ranging around $n \approx 1.5$
- Usually want small subthreshold leakage for digital designs
 - Define quality metric: inverse rate of decline of current wrt V_{GS} below V_T $S = n \frac{kT}{m} \ln(10)$

Detailed Subthreshold Current Equation

$$I_{D} = A \exp\left(\frac{q}{nkT} \left(V_{GS} - V_{T0} - \mathcal{W}_{S} + \eta V_{D}\right)\right) \left(1 - \exp\left(\frac{-qV_{DS}}{kT}\right)\right)$$
$$A = \mu_{0}C_{ox}\frac{W}{L} \left(\frac{kT}{q}\right)^{2} e^{1.8}$$

- V_{T0} = zero bias threshold voltage,
- μ0 = zero bias mobility
- Cox = gate oxide capacitance per unit area
- γ = linear body effect coefficient (small source voltage)
- $\eta = DIBL \ coefficient$

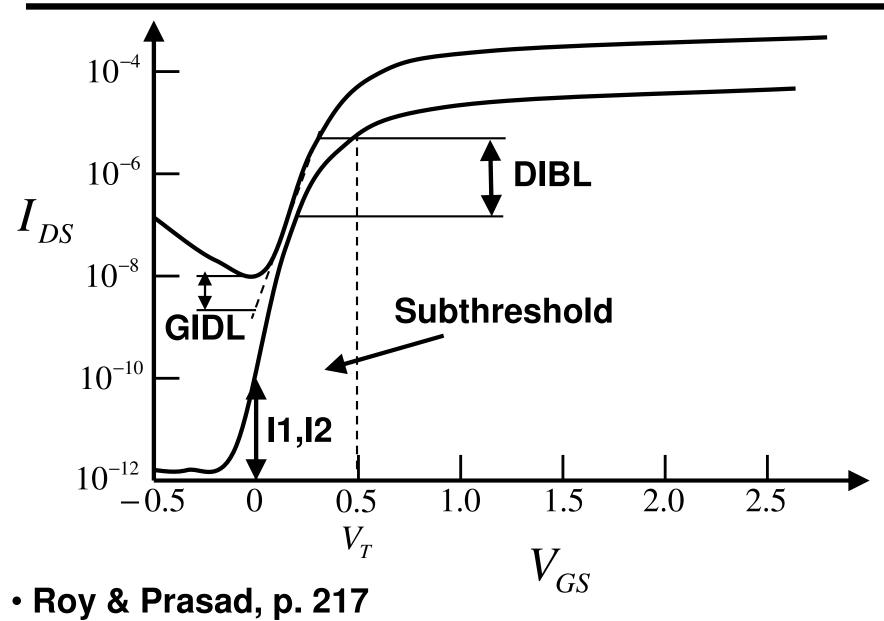
Subthreshold Slope Factor

- Ideal case: *n* = 1
 - S evaluates to 60 mV/decade (each 60 mV V_{GS} drops below V_{T} , current drops by 10X)
 - Typically n = 1.5 implies slower current decrease at 90 mV/decade
 - Current rolloff further decreased at high temperature, where fast CMOS logic tends to operate
- *n* determined by intrinsic device topology and structure
 - Changing n requires different process, like SOI

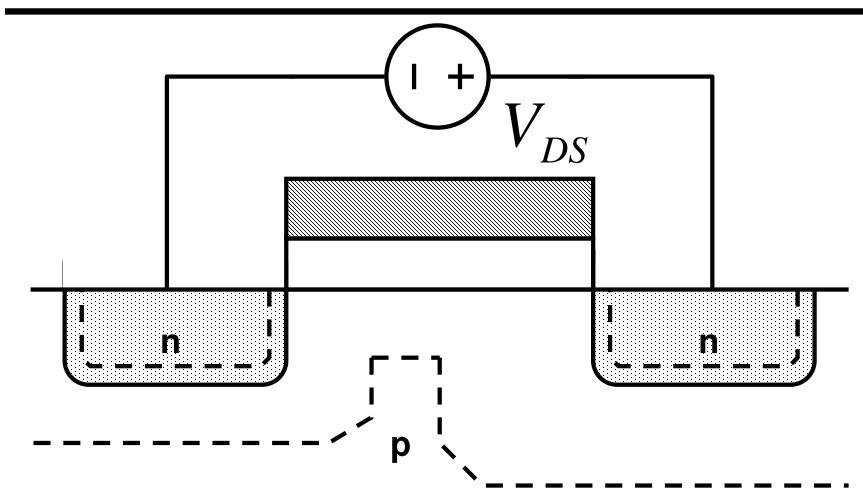
Subthreshold Slope of Various Processes

Technology	Doping	S (mV / decade)
0.8 μm, 5 V CMOS	LDD	86
0.6 µm, 5 V CMOS	LDD	80
0.35 µm, 3.3 V BiCMOS	LDD	80
0.35 μm, 2.5 V CMOS	HDD	78
0.25 μm, 1.8 V CMOS	HDD	85

• Roy & Prasad, p. 216


Drain Induced Barrier Lowering (I3)

- DIBL occurs when drain depletion region interacts with source near channel surface
 - Lowering source potential barrier
 - Source injects carriers into channel without influence of gate voltage
 - DIBL enhanced at higher drain voltage, shorter effective channel length
 - Surface DIBL happens before deep bulk punchthrough
- DIBL does not change S but lowers V_T
 - Higher surface, channel doping and shallow junctions reduce DIBL leakage current mechanism


Gate Induced Drain Leakage (I4)

- GIDL current appears in high E-field region under gate / drain overlap causing deep depletion
 - Occurs at low $V_{\rm G}$ and high $V_{\rm D}$ bias
 - Generates carriers into substrate from surface traps, band-to-band tunneling
 - Localized along channel width between gate and drain
 - Seen as "hook" in I-V characteristic causing increasing current for negative $\rm V_{G}$
 - Thinner oxide, higher VDD, lightly-doped drain enhance GIDL
- Can be major obstacle to reducing off current

Revised Drain Current vs. Gate Voltage

Punchthrough

 Source / Drain depletion regions "touch" deep inside channel

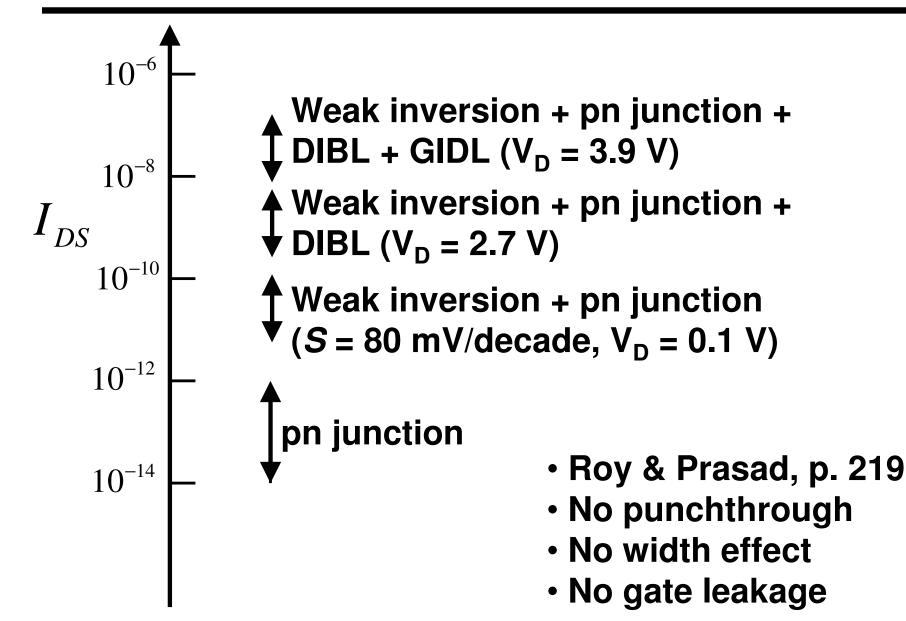
Punchthrough Channel Current (I5)

- Space-charge condition allows channel current to flow deep in subgate region
 - Gate loses control of subgate channel region
- Current varies quadratically with drain voltage
 - Subthreshold slope factor S increases to reflect increase in drain leakage
- Regarded as subsurface version of DIBL

$$I_{OX} = AE_{OX}^2 e^{-B/E_{OX}}$$

- High E-field *E_{ox}* can cause direct tunneling through gate oxide or Fowler-Nordheim (FN) tunneling through oxide bands
- Typically, FN tunneling at higher field strength than operating conditions (likely remain in future)
- Significant at oxide thickness < 50 Angstroms
- Could become dominant leakage mechanism as oxides get thinner
 - High K dielectrics might make better
 - Interesting circuit design issues (see ISSCC 2004)

Other Leakage Effects


• Narrow Width Effect (I6)

- $V_{\rm T}$ increases for geometric gate widths around 0.5 μm in non-trench isolated technologies
- Opposite effect in trench isolated technologies: $V_{\rm T}$ decreases for widths below 0.5 μm

• Hot Carrier Injection (I8)

- Short channel devices susceptible to energetic carrier injection into gate oxide
- Measurable as gate and substrate currents
- Charges are a reliability risk leading to device failure
- Increased amplitude as length reduced unless V_{DD} scaled accordingly

Leakage Summary

$$P_{leak} = \sum_{i} I_{DS_i} V_{DS_i}$$

- Parallel transistors, simply add leakage contributions for each one
- For series connected devices, calculating leakage currents more complex
 - Equate subthreshold currents through each device in series stack
 - Solve for V_{DS1} (first device in series stack) in terms of V_{DD} assuming source voltage small
 - Remaining voltages must sum to total voltage drop across series stack