
HW D2: Pal for Glue Logic: Fall ’04 1

REV 01; November 16, 2004

HW D2: Pal for Glue Logic: Fall ’04

Question Points
A. Odds and Ends (7 pts + 1 extra)
1. Two Switch Debouncers 2 pts + 1
2. Counter Application 3 pts
3.. Counter Timing Diagrams 2 pts
D1 GLUE PAL (17 pts)
4.1 RAM enable 1 pt
4.2 RAM 3-state enable 1 pt
RAM write:
4.3 Write protect (processor write) 2 pts
4.4 Manual write 1 pt
4.5 RAM write, combined 2 pts
4.6 Keyboard buffer enable 1 pt
4.7 I/O enable 2 pts
4.8 8051 Reset 1 pt
4.9 PSEN drive 1 pt
4.10 Demux 3-state 1 pt
4.11 Put it all in a file, and compile wi ABEL 4 pts
TOTAL 24 pts

Total points: 24.

Due Monday, November 22, 2004

Intro

After a little introductory stuff, this homework jumps right into two tasks important to this course, for practical
reasons: one, to introduce you to the logic compiler ABEL that we use to program PALs (or “PLD’s,”
programmable logic devices, to speak more generically); two, to start you implementing the “glue” logic that will
link the brains of your little lab computer to the memory and peripheral devices that make the thing a useful
circuit—truly a computer.

1Revision: combined counter intro wi glue hw (D2, D1 from previous term) (11/04);intermed. vars. in template commented out, with
explanatory note (4/03).

HW D2: Pal for Glue Logic: Fall ’04 2

1 Switch Debouncers (2 pts, + 1 extra)

1.1 SPST

Show how to debounce a switch of the single-pole, single-throw form shown below:

Figure 1: Debouncer for SPST switch

(There’s more than one way to do it.) Two ways, for extra credit.

Show how to debounce a switch of the single-pole, double-throw form shown below:

Figure 2: Debouncer for SPDT switch

(There’s more than one way to do it.) Two ways, for extra credit (please don’t show any debouncing method more
than once!

HW D2: Pal for Glue Logic: Fall ’04 3

2 Counter Applications: Sync vs Async Function (3 points)

Use a 74HC161, a 4-bit binary up counter with synchronous load, asynchronous clear, to make a ”divide-by-eleven”
counter in several ways:

Note:

• CY is high if Count = 15, and if ENT is asserted; CY is low otherwise;

• the counter simply holds its present state if ENT is not asserted;

• ”Synchronous Load”: Data (at the 4 ”D” inputs) is loaded into the counter on the next rising edge of the
clock if LD* is low (with 2ns setup time—yes, just two ns)

2.1 Crummy: async clear (1 point)

Show how to use the asynchronous clear to make a crummy divide-by-eleven counter: By the way, what’s so

crummy about this design?

HW D2: Pal for Glue Logic: Fall ’04 4

2.2 Good: fully synchronous divide-by-eleven (2 points, total)

1- Let the counter run up from state zero (1 point)

2- Use any states you like, taking advantage of the CarryOut function (1 point)

HW D2: Pal for Glue Logic: Fall ’04 5

3 Timing Diagram of Synchronous vs Asynchronous Schemes (2

points)

In the preceding question, you used both an asynchronous (crummy) method, and a fully-synchronous (classy)
method. Your counters, in two cases, ran from zero up, and were to divide by 11. Use the timing diagrams below to
show how the sync version is better than the async. Let your timing diagrams begin near the end of the cycle: at
count 9, and show what happens in the next 4 clock periods.

HW D2: Pal for Glue Logic: Fall ’04 6

4 GLUE PAL

This homework asks you to implement the first of two PALs required by your lab computer

Today’s PAL (the “GLUE” PAL) forms the glue logic that well need to join a microcontroller—the brains of a little
computer—to the memory and other odds and ends that will let the whole circuit serve as a small computer. Glue
is jargon for the small bits and pieces of logic that join large functions, like CPU and memory. Normally, its
pronounced with a slight sneer. PLD/PALs are good at implementing this kind of logic, and youll find nearly all
the glue fits on one 22V10.

The other (the “STEP PAL”) implements the single-step logic that will allow us to watch our little computer run
in slow motion—or, more accurately, run in “freeze-frame”. That PAL we will postpone till next homework.

Well ask you to design little bite-sized fragments, using pencil and paper, and then to put your work into an ABEL
file, which wed like you to compile and simulate.

In a template file we have assigned variables to pins. This appears at the end of this homework, and is posted on
the class website. Youll notice that we have banged every pin that is active-low: such variables show an
exclamation point that defines them as active low. The address lines do not show a !, because they are not active
low: they are as true when high as when low. We state this here just to remind you that as you write equations,
below, we want you to assume the active levels have already been assigned, in the pin declarations.

Note on naming of variables:In the real circuit, if, for example, you were to probe WR*, you would find it low when
true or asserted. In this homework, however, because all active-low pins are banged in pin declarations, we refer to
the signal WR* by its variable name, WR: that is, we use the name of the variable as it appears within the PAL.

Below we show the section of the ABEL file in which variables are assigned to pins.

"inputs

!BUSRQST pin 1;
!KRESET pin 2; // This is inverted signal from keypad (squared up & debounced by HC14)
!KWR pin 3;
!RD pin 4;

!WR pin 5;
!PSEN pin 6;
!IN0 pin 7;
!LOADER pin 8;
A15 pin 9;

A14 pin 10;
A13 pin 11;

A12 pin 13;
A11 pin 14;

"outputs

RESET51 pin 23 ISTYPE ’com’; // Here is the ONLY active-high output!
!KBUFEN pin 22 ISTYPE ’com’;
!IOR pin 21 ISTYPE ’com’; // these enable the two halves...
!IOW pin 20 ISTYPE ’com’; // ...of the I/O decoder

!RAMWE pin 19 ISTYPE ’com’;
!RAMOE pin 18 ISTYPE ’com’;
!RAMCE pin 17 ISTYPE ’com’;
!PSENDRV pin 16 ISTYPE ’com’; // During boot load, this forces PSEN* low
!DEMUXOE pin 15 ISTYPE ’com’; // enables demux during 1) run, 2) boot load

This list is not very interesting—except in one respect: you need to take note of the fact that all active-low
signals are banged in their pin declarations. This is good news for you, as you write equations: it means that for
the purpose of your equations, you should treat ALL signals as active HIGH. We hope you’re pleased! If you’re not,
then you haven’t yet appreciated how troublesome keeping track of active levels can be.

HW D2: Pal for Glue Logic: Fall ’04 7

4.1 RAM enable (1 point)

And heres the RAM enable logic we want to implement with ABEL: enable the RAM (drive its CS* or CE* pin
((chip select or chip enable), here called by the variable name RAMCE)) if BUSRQST* is asserted or if A15 is low
(indicating memory address range, rather than I/O—input/output). Assume that all variables have been banged in
the pin declarations, except A15, which is NOT an active-low signal, since it is equally asserted or true in both low
and high states.

RAMCE =

4.2 RAM 3-state Enable (OE*) (1 point)

The RAMs output enable, OE*, should be enabled if any of the following signals is asserted: PSEN, RD, or
BUSRQST. (PSEN is a timing signal indicating an instruction- fetch; RD is similar, but used for a data read;
BUSRQST signal that we use to disable the microcontroller outputs so that we can turn on memory and load it by
hand). Again assume all signals, including the output, RAMOE, have been banged in the pin declarations.

RAMOE =

4.3 RAM Write-Protect (2 points)

We want to block or frustrate any attempt by the controller to write to low addresses; this is to protect our code
from runaway programs that might destroy the fruits of our labor. Specifically, we want to permit a controller write
only at addresses above the bottom 2K, in the RAMs 32K memory space. How many address lines will the 32K
memory use?

What is the hexadecimal address of the first location above the bottom 2K?

What address lines would you require to be high, therefore, before you would permit a controller write to go
through?

HW D2: Pal for Glue Logic: Fall ’04 8

4.4 RAM manual-write enabling (1 point)

We want to be able to write into RAM by hand—but only at times that are safe: not when the computer is
running a program. We’d make a mess of things if we mistakenly pushed a manual write key while a program was
running and overwrote code or data. So, we want to permit a manual write—signaled by KWR, from the
keypad—only if BUSRQST is also asserted. Lets call this permitted manual write OK KWR. (It is an
intermediate variable, not brought out to any pin, so we need not trouble ourselves with the thought that it might
be active low. Show the equation for this intermediate variable, assuming as usual that the relevant signals have
been banged in pin declarations.

OK KWR =

4.5 Complete (combined) RAM write-enable (WR*) (2 points)

Now lets put together the two branches youve just designed: controller write and manual write. Show the equation
for the RAMs WE* pin, whose variable is named RAMWE. Again assume that all the active-low signals have been
banged in pin declarations. The two branches are:

1. controller write—which is the WR signal, conditioned by the write-protect logic that you described, above,
and

2. The manual write. (Please show, once again, the constituents of OK KWR, rather than use that intermediate
variable in your equation.)

And we would like you to modify the write-enabling as follows:

• When a signal named LOADER is asserted, the Write-Protect feature should be disabled. That is, an 8051
WR should generate a RAMWE signal, regardless of address. (This behavior will allow our automated
program-loader to install a program anywhere in memory.)

RAMWE =

4.6 Keyboard Buffer Enable (KBUFEN*) (1 point)

A few labs down the road, well want to be able to let the controller read a keypad value. So, well want to permit
either of two events to turn on its 3-state: a manual write, or a controller input at port 0—an IN0* signal. Thus:

Figure 3: Logic that your KBUFEN function is to implement

Please write the ABEL equation for the OE* signals, here called by the variable name KBUFEN.

KBUFEN =

HW D2: Pal for Glue Logic: Fall ’04 9

4.7 Two I/O Enables (IOR, IOW) (2 points)

These two signals indicate an I/O operation. We want one for each of the two possible directions: into the
computer (an “input,” an IORead), and out of the computer (an “output,” an IOWrite). We will use these signals
in Lab 19, as part of the enabling of an “I/O decoder” IC. The following are the two signals:

• Both signals—that is, all “I/O” or “input-output”—are asserted only when an address falls into the upper
half of all address space: that is, where address line A15, the most-significant bit, is high.

• IOR: IOR should be asserted on an assertion of RD (indicating a data read) or PSEN (indicating a code or
“instuction” read).

• IOW: IOW should be asserted on WR (no write-protect is involved, here).

IOR =

IOW =

4.8 Processor Reset (RESET51) (1 point)

This is a little strange, but turns out to be convenient: we let any one of three signals assert the processors RESET
pin: either

1. A RESET from the keypad (debounced and inverted by an HC14), (the resulting, debounced, signal is named
KRESET; it is active-low, but you need not worry about that, as usual: all active-low signals have been
“banged” in the pin-declarations); or

2. BUSRQST (busrequest) from the keypad (this signal sort of puts the processor off duty); or

3. LOADER: this is a strange one, but it turns out that the code-loading-from-PC feature requires assertion of
the processor’s RESET line. (We won’t use this feature till the very end of the course; but we want to set
things up so we can use it.)

We drive the 8051’s RESET this way because the RESET does double duty for us, as we may have mentioned: it
resets the processor, forcing it to start up anew, on release of RESET; but it also makes the processor turn off its
3-states, which permits us to take control of the buses, as we do during a bus-request (fancy name: direct memory
access). (BR* does another job at the same time, turning on our ’469 counters 3-states.) Assuming banged pins as
usual, write the ABEL equation for RESET51:

RESET51 =

HW D2: Pal for Glue Logic: Fall ’04 10

4.9 DEMUX 3-state control (1 point)

The 8051 uses an annoying trick to save pins: it time-shares 8 lines between data and address. A ’573 octal
transparent latch “de-multiplexes” these lines, and needs to be told to stop driving the address lines, sometimes.

(You don’t need to understand multiplexing, to do this exercise; we’re just talking to anyone who can’t stand to do
an exercise with no idea why !).

The rule for the 3-state control on the ’573, a variable named “DEMUXOE” (“...output enable”) is the following:

assert DEMUXOE (enabling the 3-state) under the following conditions:

• if we are using the loader (LOADER is asserted); or

• if neither BUSRQST nor KRESET is asserted.

DEMUXOE =

4.10 PSEN driving, during Loading (1 point)

Here’s an odd one: during LOADING, we need to indicate to the 8051 that we’re loading by driving PSEN* low.
The rest of the time, we must let PSEN* do what it likes (it is a bidirectional pin: usually it is an output—but in
this exceptional case it can be driven). Therefore, we need to drive PSEN*—a variable named PSENDRV, in this
file—in a way we have not tried before:

• drive the line LOW when LOADER is asserted;

• at all other times, turn off PSENDRV’s 3-state.

To do this,

• we first say that whenever PSENDRV is active, we want the signal to be TRUE :

"PSENDRV = ^b 1;"

• we use the following form to turn on the 3-state: “PSENDRV.oe = ...;”.

PSENDRV.oe =

HW D2: Pal for Glue Logic: Fall ’04 11

4.11 Put it all into one file and compile it (4 points)

Use the template file, glu51 mt.abl, inserting your equations. All you need do is transfer the several handwritten
equations youve already done—then compile it with ABEL. The simulation vectors will tell you whether youve
done it right. The template file is shown below, in case you have trouble getting it from the website
http://www.people.fas.harvard.edu/~thayes/phys123/.

Please hand in your source file (.ABL) and your simulation results (.SM1). The template file appears at the end
of this homework—but also is posted on the class website, so YOU NEED NOT TYPE IN THIS
TEMPLATE FILE!

Template File for GLUE PAL

module glu51_mt
TITLE ’Glue for 8051 lab computer, loader added 7/14/01’

// glu51_mt device ’P22V10’; // This line commented out for students, whose computers

// lack the ’device library’ this device specification assumes
"inputs

!BUSRQST pin 1;

!KRESET pin 2; // This is inverted signal from keypad (squared up & debounced by HC14)
!KWR pin 3;
!RD pin 4;
!WR pin 5;
!PSEN pin 6;

!IN0 pin 7;
!LOADER pin 8;
A15 pin 9;
A14 pin 10;
A13 pin 11;

A12 pin 13;
A11 pin 14;

"outputs

RESET51 pin 23 ISTYPE ’com’; // Here is the ONLY active-high output!
!KBUFEN pin 22 ISTYPE ’com’;
!IOR pin 21 ISTYPE ’com’; // these enable the two halves...
!IOW pin 20 ISTYPE ’com’; // ...of the I/O decoder

!RAMWE pin 19 ISTYPE ’com’;
!RAMOE pin 18 ISTYPE ’com’;
!RAMCE pin 17 ISTYPE ’com’;
!PSENDRV pin 16 ISTYPE ’com’; // During boot load, this forces PSEN* low

!DEMUXOE pin 15 ISTYPE ’com’; // enbls demux during 1) run, 2) boot load

// Constant assignments & intermed. vars.

Z, X, C, H, L = .Z., .X. , .C., 1, 0 ;

WRITE_ADDRESS = [A14..A11]; // This ’field’ is used in simulation vectors, to allow shorthand address specif’ctn
// next two lines are optional: may help to tidy equations, but you may prefer to ignore them.
// They are commented out. If you choose to use and define these, you’ll remove the comment delimiters
// WRITE_OK = // Blocks CPU write in low 2K
// RUN = // either of these signals can prevent

// RUN; used to control demux oe equations

RAMCE = // Bottom 32K for RAM (top = I/O)
RAMOE = //3 conditions for reading

// mem: pgm rd, data read

// manual control
RAMWE = // Bottom 2K write protctd--but

// no wrt-protct during download

KBUFEN =

IOR = //Used to enable I/O decoder, hence
// the name--but it really means
// ’transaction in I/O space’

IOW =

RESET51 = // 8051 RESET does double duty: pseudo-3stts buses
// also required during download

DEMUXOE = // 573 demux is 3-stated on BR or Kreset

HW D2: Pal for Glue Logic: Fall ’04 12

PSENDRV = ^b 1; // Assert this (active low) during download

PSENDRV.oe = // ...by turning on the 3-state

test_vectors ’test RAMCE logic’

([A15, BUSRQST] -> [RAMCE])

[1,0] -> [0];
[0,0] -> [1];
[1,0] -> [0];
[1,1] -> [1];

[1,0] -> [0];
[0,1] -> [1];
[1,0] -> [0];

test_vectors ’test RAM OE logic’

([PSEN,RD,BUSRQST] -> [RAMOE])
[0,0,0] -> [0];
[1,0,0] -> [1];
[0,0,0] -> [0];
[0,1,0] -> [1];

[0,0,0] -> [0];
[0,0,1] -> [1];
[0,0,0] -> [0];

test_vectors ’test RAM write logic: first, normal run, write-protected...’

([WRITE_ADDRESS, WR, KWR, BUSRQST,LOADER] -> [RAMWE])

[0,0,0,0,0] -> [0];

[0,1,0,0,0] -> [0];
[1,1,0,0,0] -> [1];
[1,0,1,0,0] -> [0];
[0,0,1,1,0] -> [1];
[0,0,0,1,0] -> [0];

[0,0,1,0,0] -> [0];

test_vectors ’test RAM write logic: ...second, loader allows write anywhere (defeats wrt protect)’

([WRITE_ADDRESS, WR, KWR, BUSRQST,LOADER] -> [RAMWE])

[0,0,0,0,0] -> [0];
[0,1,0,0,0] -> [0];
[0,1,0,0,1] -> [1]; // write to low address, but effective with Loader asserted
[0,0,0,0,1] -> [0];

test_vectors ’test micro reset logic’
([KRESET,BUSRQST,LOADER] -> [RESET51])

[0,0,0] -> [0];
[1,0,0] -> [1];
[0,0,0] -> [0];
[0,1,0] -> [1];
[0,0,0] -> [0];

[0,0,1] -> [1];
[0,0,0] -> [0];

test_vectors ’test KBUFEN logic’
([BUSRQST,KWR,IN0] -> [KBUFEN])
[0,0,0] -> [0];
[1,0,0] -> [0];
[1,1,0] -> [1];

[0,1,0] -> [0];
[0,0,0] -> [0];
[0,0,1] -> [1];
[0,0,0] -> [0];

test_vectors ’test I/O logic: first, use RD* or WR*’
([PSEN,RD, WR, A15] -> [IOR, IOW])
[0,0,0,0] -> [0,0];
[0,1,0,0] -> [0,0]; // RD, but not in I/O space

[0,0,0,0] -> [0,0];
[0,1,0,1] -> [1,0]; // First effective io read
[0,0,0,1] -> [0,0];
[0,0,1,1] -> [0,1]; //...effective io write
[0,0,1,0] -> [0,0]; // attempted write, but not in I/O space

[0,0,0,1] -> [0,0];

HW D2: Pal for Glue Logic: Fall ’04 13

test_vectors ’test I/O logic: second, rely on PSEN*’
([PSEN,RD, WR, A15] -> [IOR, IOW])

[0,0,0,0] -> [0,0];
[1,0,0,0] -> [0,0]; // PSEN*, but not in I/O space
[1,0,0,1] -> [1,0]; // PSEN*, in I/O space
[0,0,0,1] -> [0,0]; // I/O space, but no read or write or PSEN*

test_vectors ’test LOADER drive of PSEN* as input’

([LOADER] -> [PSENDRV])

[0] -> [Z];
[1] -> [1];
[0] -> [Z];

test_vectors ’try demux control’

([KRESET, BUSRQST, LOADER] -> [DEMUXOE])

[0,0,0] -> [1];
[1,0,0] -> [0];

[0,0,0] -> [1];
[0,1,0] -> [0];
[0,0,0] -> [1];
[1,0,0] -> [0];

[1,0,1] -> [1]; // Amended per Felix’s observation that "001" did not test Loader
END glu51_mt

hwd2p nov04.tex; November 16, 2004

