Using Temperature Parameters and Equations

Temperature Parameters

The following temperature parameters apply to all MOSFET model levels and the associated bulk-to-drain and bulk-to-source MOSFET diode within the MOSFET model. The temperature equations used for the calculation of temperature effects on the model parameters are selected by the TLEV and TLEVC parameters.

Temperature Effects Parameters

Name (Alias)

Units

Default

Description

BEX

 

-1.5

Low field mobility, UO, temperature exponent

CTA

1/ ° K

0.0

Junction capacitance CJ temperature coefficient. Set TLEVC to 1 to enable CTA to override default Star-Hspice temperature compensation.

CTP

1/ ° K

0.0

Junction sidewall capacitance CJSW temperature coefficient. Set TLEVC to 1 to enable CTP to override default Star-Hspice temperature compensation.

EG

eV

 

Energy gap for pn junction diode. Set default=1.11, for TLEV=0 or 1 and default=1.16, for TLEV=2.

1.17 - silicon
0.69 - Schottky barrier diode
0.67 - germanium
1.52 - gallium arsenide

F1EX

 

0

Bulk junction bottom grading coefficient

GAP1

eV/ ° K

7.02e-4

First bandgap correction factor (from Sze, alpha term)

7.02e-4 - silicon
4.73e-4 - silicon
4.56e-4 - germanium
5.41e-4 - gallium arsenide

GAP2

° K

1108

Second bandgap correction factor (from Sze, beta term)

1108 - silicon
636 - silicon
210 - germanium
204 - gallium arsenide

LAMEX

1/ ° K

0

LAMBDA temperature coefficient

N

 

1.0

Emission coefficient

MJ

 

0.5

Bulk junction bottom grading coefficient

MJSW

 

0.33

Bulk junction sidewall grading coefficient

PTA

V/ ° K

0.0

Junction potential PB temperature coefficient. Set TLEVC to 1 or 2 to enable PTA to override default Star-Hspice temperature compensation.

PTC

V/ ° K

0.0

Fermi potential PHI temperature coefficient. Set TLEVC to 1 or 2 to enable PTC to override default Star-Hspice temperature compensation.

PTP

V/ ° K

0.0

Junction potential PHP temperature coefficient. Set TLEVC to 1 or 2 to enable PTP to override default Star-Hspice temperature compensation.

TCV

V/ ° K

0.0

Threshold voltage temperature coefficient. Typical values are +1mV for n-channel and -1mV for p-channel.

TLEV

 

0.0

Temperature equation level selector. Set TLEV=1 for ASPEC style - default is SPICE style.
When option ASPEC is invoked, the program sets TLEV for ASPEC.

TLEVC

 

0.0

Temperature equation level selector for junction capacitances and potentials, interacts with TLEV. Set TLEVC=1 for ASPEC style. Default is SPICE style.
When option ASPEC is invoked, the program sets TLEVC for ASPEC.

TRD

1/ ° K

0.0

Temperature coefficient for drain resistor

TRS

1/ ° K

0.0

Temperature coefficient for source resistor

XTI

 

0.0

Saturation current temperature exponent. Use XTI=3 for silicon diffused junction. Set XTI=2 for Schottky barrier diode.

Using MOS Temperature Coefficient Sensitivity Parameters

Model levels 13 (BSIM1), 39 (BSIM2), and 28 (METAMOS) have length and width sensitivity parameters associated with them as shown in the following table. These parameters are used in conjunction with the Automatic Model Selector capability and enable more accurate modeling for various device sizes. The default value of each sensitivity parameter is zero to ensure backward compatibility.

Parameter

Description

Sensitivity Parameters

Length

Width

Product

BEX

Low field mobility, UO, temperature exponent

LBEX

WBEX

PBEX

FEX

Velocity saturation temperature exponent

LFEX

WFEX

PFEX

TCV

Threshold voltage temperature coefficient

LTCV

WTCV

PTCV

TRS

Temperature coefficient for source resistor

LTRS

WTRS

PTRS

TRD

Temperature coefficient for drain resistor

LTRD

WTRD

PTRD

Using Temperature Equations

This section describes how to use temperature equations.

Calculating Energy Gap Temperature Equations

To determine energy gap for temperature compensation use the equations:

TLEV = 0 or 1:


 

TLEV = 2:


 

Calculating Saturation Current Temperature Equations


 

where

 

These isbd and isbs are defined in Using a MOSFET Diode Model.

Calculating MOS Diode Capacitance Temperature Equations

TLEVC selects the temperature equation level for MOS diode capacitance.

TLEVC=0:






 

TLEVC=1:






 

TLEVC=2:






 

TLEVC=3:






 

where for TLEV=0 or 1:

 

 

TLEV=2:

 

 

Calculating Surface Potential Temperature Equations

TLEVC=0:

 

TLEVC=1:

 

If the PHI parameter is not specified, it is calculated as:

 

The intrinsic carrier concentration, ni, must be temperature updated, and it is calculated from the silicon bandgap at room temperature.

 

TLEVC=2:

 

TLEVC=3:

 

where TLEV=0 or 1:

 

TLEV=2:

 

Calculating Threshold Voltage Temperature Equations

The threshold temperature equations are:

TLEV=0:


 

TLEV=1:


 

TLEV=2:


 

Calculating Mobility Temperature Equations

The MOS mobility temperature equations are:



 

Calculating Channel Length Modulation Temperature Equation

The LAMBDA is modified with temperature if model parameter LAMEX is specified.

 

Calculating Diode Resistance Temperature Equations

The following equation is an example of effective drain and source resistance:


 

 

Star-Hspice Manual - Release 2001.2 - June 2001