http://www.ece.cmu.edu/~ee762/hspice-docs/html/hspice_and_qrg/index.html
Readings and Knowledge on semiconductor and IC
All
Handouts are available in the file cabinet in 3rd floor of Gates
Handouts do not stay in the
file cabinet very long. Please don't wait.
Lecture |
2 slides/page |
extra |
Lecture 1 - Overview/Modelling |
|
|
Lecture 2 - Wires and Wire Models |
||
Lecture 3 - Transistor Modelling |
|
|
Lecture 4 - Adders |
|
|
Lecture 5 - Other Adder Issues |
|
|
Lecture 6 - Transistor in the real model |
|
|
Lecture 7 - Flop and Latch Design |
|
|
Lecture 8 – Clocking of High Performance Processors |
|
|
Lecture 9 - Skew Tolerant Design |
|
|
Lecture 10 – Circuit Rules of Thumb |
|
|
Lecture 11 – Asynchronous Circuits |
|
|
Lecture 12 – VLSI Power Delivery |
|
|
Lecture 14 – Test and Debug |
|
|
Lecture 15 – Processing and Reliability Issues |
|
|
Lecture 16 – Overview of High-Speed IOs |
|
|
Lecture 17 – Power in CMOS VLSI |
Wires
Line-To-Ground Capacitance Calculation (Barke 88)
Transistors
Transistor Matching (Pelgrom 89)
Transistor Matching (Lovett 98)
High-Field
MOS Model (Chen 97)
Circuits
Logical Effort Review (Harris)
Signal and Power Integrity (Lev96)
Dynamic
Logic and Latches (Gronowski96)
Clocking
Skew Tolerant Domino (Harris97)
Latch Comparison (Stojanovic99)
Clocking Slides from EE271 (1up PDF)
Statistical
Clock Skew Modeling with delay variation (Harris and Naffziger 01)
Adder
Adder
Slides from EE271 (1up PDF) and (2up
PS)
Interconnects
Low-swing Onchip Signaling (Zhang2000)
Efficient
On-Chip Global Interconnects (RonHo2003)
CAMs
First DRAM CAM (Mundy72) (fun only to see what circuit design was like back then)
Large CAM for IP lookup (Sharfi98)
Preclassification CAM (Schultz96)
Handout # | Content | Files | Date published / revised |
1 | Information Sheet | 9/17/04 | |
2 | L1: Introduction, Long Channel MOS Model | 1 pp, 2 pp | 9/19/04 |
3 | L2: Common Source Amplifier | 1 pp, 2 pp | 9/19/04 |
4 | Homework 1 (due 10/04/04) | 9/27/04 | |
5 | L3: Figures of Merit for Transistors | 1 pp, 2 pp | 9/27/04 |
6 | L4: Subthreshold Operation, Short Channel Effects | 1 pp, 2 pp | 9/29/04 / 10/08/04 |
7 | Homework 2 (due 10/11/04) | 10/04/04 | |
8 | L5: gm/ID Design Methodology | 1 pp, 2 pp | 10/01/04 |
9 | L6: Extrinsic Capacitances | 1 pp, 2 pp | 10/04/04 |
10 | L7: Zero Value Time Constant Analysis | 1 pp, 2 pp | 10/05/04 |
11 | Homework 3 (due 10/18/04) | 10/11/04 | |
12 | L8: Body Effect, Common Gate Stage | 1 pp, 2 pp | 10/08/04/ 10/13/04 |
13 | L9: Common Drain Stage | 1 pp, 2 pp | 10/11/04 |
14 | L10: Differential Pair | 1 pp, 2 pp | 10/13/04/ 10/21/04 |
15 | Homework 4 (due 10/25/04) | 10/17/04 | |
16 | L11: Offset Voltage, Current Mirrors | 1 pp, 2 pp | 10/16/04 |
17 | L12: Process Variations, Feedback | 1 pp, 2 pp | 10/18/04 |
18 | L13: Fully Differential Amplifiers | 1 pp, 2 pp | 10/20/04 |
19 | Homework 5 (due 11/01/04) | 10/25/04 | |
20 | L14: Stability, Feedback Circuit Analysis | 1 pp, 2 pp | 10/23/04 |
21 | L15: Loop Gain Simulation | 1 pp, 2 pp | 10/25/04 |
22 | L16: Two-Stage OTA | 1 pp, 2 pp | 10/27/04 |
23 | Project (due 11/24/04) | 11/01/04 | |
24 | Project Submission Template | txt | 11/01/04/ 11/09/04 |
25 | L17: Compensation, Two-Stage OTA Design | 1 pp, 2 pp | 10/30/04/ 11/22/04 |
26 | L18: Feedback and Port Impedances | 1 pp, 2 pp | 11/01/04 |
27 | L19: Step Response | 1 pp, 2 pp | 11/03/04 |
28 | L20: Slewing | 1 pp, 2 pp | 11/06/04/ 12/04/04 |
29 | L21: OTA Variants, CMFB implementation | 1 pp, 2 pp | 11/06/04 |
30 | L22: Single Ended OTAs, Output Stages | 1 pp, 2 pp | 11/12/04 |
31 | L23: Electronic Noise | 1 pp, 2 pp | 11/15/04/ 11/22/04 |
32 | L24: kT/C Noise | 1 pp, 2 pp | 11/18/04/ 11/22/04 |
33 | L25: Supply Independent Biasing | 1 pp, 2 pp | 11/19/04/ 12/09/04 |
34 | L26: Bandgap Reference | 1 pp, 2 pp | 11/23/04 |
35 | L27: Bandgap Reference | 1 pp, 2 pp | 11/24/04/ 11/29/04 |
36 | L28: Technology Scaling | 1 pp, 2 pp | 11/29/04 |
37 | L29: Class summary, Project Presentations | 1 pp, 2 pp | 11/30/04 |
EE311:
Class Notes
Handout 1. Same as the course info on this web page
Handout 2. Trends
in Integrated Circuits Technology
Handout 3.
MOS Gate
Dielectric Technology
Handout 4.
Shallow
Junctions
Handout 5.
Ohmic
Contacts
Handout 6.
Interconnect Scaling
Handout 7.
Power Modeling
Handout 8.
Interconnect Thermal Modeling
Handout 9.
Interconnect Scaling Thermal Issues
Handout 10. How
to use TSUPREM4 (Tutorial)
Handout 11.
Silicides
Handout 12.
AluminumInterconnect Technology
Handout 13.
Copper
Interconnect Technology
Handout 14.
Device Isolation Technology
Handout 15.
Deposition and Planarization Technology
Lecture Slides
Trends in
Integrated Circuits Technology
MOS Gate Dielectric Technology: Part 1
MOS Gate Dielectric Technology: Part 2
Shallow Junctions/Ohmic Contacts
Silicides & Metal gates
Interconnect Scaling
Aluminum Interconnect Technology
Copper Interconnect Technology
Low-K Dielectrics
Future Interconnect Technology
Future
Devices part 1
Future Devices part 2
Future Devices part 3
Sample Exam
1.
Exam Example 1
2. Exam
Example 2
Useful Publications
General Technology Trends
1. Plummer and
Griffin, "Material and Process Limits in Silicon VLSI Technology", IEEE
Proceedings, March 2002.
2. Doyal et
al., "Transistor Elements for 30nm Physical Gate Length and Beyond", Intel
Technology Journal, May 2002
3. P.
Wong, et al., "Nanoscale CMOS", IEEE Proceedings, April 1999.
Gate Dielectric
1. Momose,
et al., "Feasibility of 1.5-nm Gate Oxide", IEEE Trans. Electron Dev., MARCH
1998.
2. Gupta et
al., "Conduction in Gate Oxide", IEEE Electron Dev. Lett., Dec. 1997.
3.
Schuegraf and Hu, "A Model for Gate Oxide Breakdown", IEEE Trans. Electron Dev.,
May 1994.
4. Yang and
Saraswat, "Stress Effects in Gate Oxide", IEEE Trans. Electron Dev., April 2000.
5. Bhat
et al., "NO Nitrided Gate Oxide", IEEE Trans. Electron Dev., May 1995.
6. Kim et
al., "Nitride/Oxide Gate Dielectric", IEEE Trans. Electron Dev., May 1995.
7. Wilk et
al., "High-k gate dielectrics", J. Applied Physics, May 2001.
8.
Robertson, "High dielectric constant oxides", Eur. Phys. J. Appl. Phys. 28,
265?91 (2004).
Shallow Junctions
1. Kim, Park
and Woo, "Advanced Model and Analysis of Series Resistance for CMOS Scaling Into
Nanometer Regime", Part I: Theoretical Derivation", IEEE Trans. Electron Dev.,
March 2002.
2. Kim, Park
and Woo, "Advanced Model and Analysis of Series Resistance for CMOS Scaling Into
Nanometer Regime", Part II: Quantitative Analysis", IEEE Trans. Electron Dev.,
1996.
Gate Electrode
1.
Mann, et al.,, "Silicides and Local Interconnects.....", IBM J. Res. & Dev. July
1995.
2.Yeo,
King, and Hu, "Metal-dielectric band alignment and its implications for metal
gate complementary metal-oxide-semiconductor technology", J. Appl. Phys., Vol.
92, No. 12, 15 December 2002.
Device Isolation
1. P.
Smeys, "Exerpts from PhD Thesis", Stanford Univ. March 1996.
Interconnect
1.
Havemann et al., "High-Performance Interconnects: An Integration Overview", IEEE
Proceedings, May 2001.
2. A. Loke,
"Process integration issues of low-permittivity dielectrics With copper for
high-performance interconnects", Chapter 1 from PhD Thesis, Stanford Univ. March
1999.
3.A. Loke,
"Process integration issues of low-permittivity dielectrics With copper for
high-performance interconnects", Chapter 2 from PhD Thesis, Stanford Univ. March
1999.
4. A. Loke,
"Process integration issues of low-permittivity dielectrics With copper for
high-performance interconnects", Chapter 3 from PhD Thesis, Stanford Univ. March
1999.
5. P. Kapur, et
al., "Technology and Reliability Constrained Future Copper Interconnects揚art I:
Resistance Modeling", IEEE Trans. Electron Dev., 1996.
6. P. Kapur, et
al., "Technology and Reliability Constrained Future Copper Interconnects揚art II:
Performance Implications", IEEE Trans. Electron Dev., 1996.
Strained-Silicon Technologies
K. Rim, et.
al., "Enhanced Hole Mobilities in Surface-channel Strained-Si p-MOSFETs", IEEE
IEDM 1995
K.
Rim, et. al., "Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFETs",
IEEE Trans. Electron Dev. 2000
T. Ghani, et. al., A 90nm High Volume Manufacturing Logic Technology Featuring
Novel 45nm Gate Length Strained Silicon CMOS Transistors", IEEE IEDM 2003
S. Thompson, et. al., "A Logic Nanotechnology Featuring Strained-Silicon", IEEE
Electron. Dev. Lett., April 2004
Future Technologies
P. Wong,
"Beyond the Conventional Transistor", IBM J. Res. & Dev. MARCH/MAY 2002.
J.
Hutchby, et. al., "Extending the Road Beyond CMOS", IBM J. Res. & Dev. MARCH/MAY
2002.
Saraswat
Group, "3D Integrated Circuits, Proc. IEEE, May 2001.
D.
Miller, "Rationale and Challenges for Optical Interconnects to Electronic
Chips", Proc.IEEE, June 2000.
A.
Naeemi, et al., "Performance Comparison between Carbon Nanotube and Copper
Interconnects for GSI", IEDM 2004.
Power
P. Kapur,
et al., "Power Optimization of Future transistors and a resulting global
comparison standard", IEDM 2004.
Shekar Borkar,
"Digital Design for Low-Power Systems", IEDM Short Course 2005.
Scott
Crowder, "Low Power CMOS Process Technology", IEDM Short Course, 2005.
==================================
CMOS and BiCMOS Process Integration Course
|
===============================
Message from the Vice President, Science and Technology, IBM Research Division | T.-C. Chen | ||||||
Preface | W. Haensch and M. Ieong, Guest Editors | p. 337 | |||||
Silicon CMOS devices beyond scaling | W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, J. B. Johnson, and M. V. Fischetti | p. 339 | |||||
Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations | D. A. Antoniadis, I. Aberg, C. Ní Chléirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt | p. 363 | |||||
Germanium channel MOSFETs: Opportunities and challenges | H. Shang, M. M. Frank, E. P. Gusev, J. O. Chu, S. W. Bedell, K. W. Guarini, and M. Ieong | p. 377 | |||||
Advanced high-κ dielectric stacks with polySi and metal gates: Recent progress and current challenges | E. P. Gusev, V. Narayanan, and M. M. Frank | p. 387 | |||||
Emerging nanoscale silicon devices taking advantage of nanostructure physics | T. Hiramoto, M. Saitoh, and G. Tsutsui | p. 411 | |||||
Optimizing CMOS technology for maximum performance | D. J. Frank, W. Haensch, G. Shahidi, and O. H. Dokumaci | p. 419 | |||||
High-performance CMOS variability in the 65-nm regime and beyond | K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer | p. 433 | |||||
Product-representative “at speed” test structures for CMOS characterization | M. B. Ketchen and M. Bhushan | p. 451 | |||||
Ultralow-voltage, minimum-energy CMOS | S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch, E. J. Nowak, and D. M. Sylvester | p. 469 | |||||
Three-dimensional integrated circuits | A. W. Topol, D. C. La Tulipe, Jr., L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong | p. 491 |
|
Introduction
to Wafer Fab Processing: October 15-18, Austin, Texas IC Packaging Technology and Challenges Course: October 15-16, Austin, Texas IC Packaging Design and Modeling Course: October 17-19, Austin, Texas CMOS and BiCMOS Process Integration Course: October 22-24, Austin, Texas Failure and Yield Analysis Short Course: March 10-13, 2008, San Diego, California; May 26-29, 2008, Munich, Germany Semiconductor Reliability Short Course: March 24-26, 2008, San Diego, California; May 19-21, 2008, Munich, Germany |
=====================================
http://www.cei.se/