Lecture 27

ANNOUNCEMENTS

- Regular office hours will end on Monday 12/10
 - Special office hours will be posted on the EE105 website
- Final Exam Review Session: Friday 12/14, 3PM, HP Auditorium
 - Video will be posted online by Monday 12/17
- Final Exam:
 - Thursday 12/20, 12:30PM-3:30PM, 277 Cory
 - Closed book; 6 pages of notes only
 - Comprehensive in coverage:
 - Material of MT#1 and MT#2, plus MOSFET amplifiers, MOSFET current sources, BJT and MOSFET differential amplifiers, feedback.
 - Qualitative questions on state-of-the-art device technology

Outline

• IC technology advancement Q: How did we get here?

• Modern BJT technology

Q: What is an HBT?

• Modern MOSFET technology

Q: What are the challenges (and potential solutions) for continued MOSFET scaling?

The IC Market

• The semiconductor industry is approaching \$300B/yr in sales

EE105 Fall 2007

Lecture 27, Slide 3 Courtesy of Dr. Bill Flounders, UC Berkeley Microlab Prof. Liu, UC Berkeley

IC Technology Advancement

Improvements in IC performance and cost have been enabled by the steady miniaturization of the transistor

EE105 Fall 2007

The Nanometer Size Scale

Nanogap DNA Detector

EE105 Fall 2007

IC Fabrication

- **Goal:** Mass fabrication (*i.e.* simultaneous fabrication) of many IC "chips" on each wafer, each containing millions or billions of transistors
- **Approach:** Form thin films of semiconductors, metals, and insulators over an entire wafer, and pattern each layer with a process much like printing (lithography).

Planar processing consists of a sequence of additive and subtractive steps with lateral patterning ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ oxidation etching etching lithography deposition

Planar Processing

(patented by Fairchild Semiconductor in 1959: J. A. Hoerni, US Patent 3,064,167)

• <u>DEPOSITION</u> of a thin film

- <u>LITHOGRAPHY</u>
 - Coat with a protective layer
 - Selectively expose the protective layer
 - Develop the protective layer

- <u>ETCH</u> to selectively remove the thin film
- Strip (etch) the protective layer EE105 Fall 2007 Lecture 27, Slide 8 Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

Overview of IC Process Steps

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

Modern BJT Structure

Features:

- Narrow base
- n+ poly-Si emitter
- Self-aligned p+ poly-Si base contacts
- Lightly-doped collector
- Heavily-doped epitaxial subcollector
- Shallow trenches and deep trenches filled with SiO_2 for electrical isolation

BJT Performance Parameters

• Common emitter current gain, β :

$$\beta = \frac{I_{C}}{I_{B}} = \frac{\left(\frac{qA_{E}D_{B}n_{iB}^{2}}{N_{B}W_{B}}\right)}{\left(\frac{qA_{E}D_{E}n_{iE}^{2}}{N_{E}W_{E}}\right)} = \frac{D_{B}n_{iB}^{2}N_{E}W_{E}}{D_{E}n_{iE}^{2}N_{B}W_{B}}$$

• The cutoff frequency, f_{T} , is the frequency at which β falls to 1. It is correlated with the **maximum frequency of oscillation**, f_{max} .

• Intrinsic gain
$$g_m r_o \approx \frac{I_C}{V_T} \cdot \frac{V_A}{I_C} = \frac{V_A}{V_T}$$

Heterojunction Bipolar Transistor (HBT)

- To improve β , we can increase n_{iB} by using a base material (Si_{1-x}Ge_x) that has a smaller band gap energy
 - for x = 0.2, E_q of Si_{1-x}Ge_x is 0.1eV smaller than for Si

$$n_i^2 \propto \exp\left(\frac{-E_g}{kT}\right)$$
$$\beta = \frac{D_B n_{iB}^2 N_E W_E}{D_E n_{iE}^2 N_B W_B}$$

- Note that this allows a large β to be achieved with large $N_{\rm B}$ (even > $N_{\rm E}$), which is advantageous for
 - increasing Early voltage (V_A)
 - reducing base resistance

Modern MOSFET Structures

(Intel Penryn©, from www.semiconductor.com)

• 45nm CMOS technology features:

- High-permittivity gate dielectric and metal gate electrodes
- strained channel regions
- shallow trench isolation

MOSFET Performance Parameters

• Transconductance (short-channel MOSFET):

$$g_m = vWC_{ox} = \frac{I_D}{V_{GS} - V_{TH}}$$

- The average carrier velocity v is dependent on the velocity at which carriers are "injected" from the source into the channel, which is dependent on the carrier mobility
- The cutoff frequency of a MOSFET is given by $2\pi f_T = \frac{g_m}{C_{GS}}$

• Intrinsic gain:
$$g_m r_o = \frac{I_D}{V_{GS} - V_{TH}} \cdot \frac{1}{\lambda I_D} = \frac{1}{\lambda (V_{GS} - V_{TH})}$$

EE105 Fall 2007

Lecture 27, Slide 14

MOSFET Scaling Challenges

- Suppression of short-channel effects
 - Gain in I_{ON} is incommensurate with L_g scaling
- Variability in performance
 - Sub-wavelength lithography:

(Costly resolution-enhancement techniques are needed)

- Random variations:
 - Photoresist line-edge roughness

• Statistical dopant fluctuations

A. Brown *et al.*, *IEEE Trans. Nanotechnology*, p. 195, 2002 **Prof. Liu, UC Berkeley**

EE105 Fall 2007

Lecture 27, Slide 15

"V_{тн} Roll-Off"

- $|V_{TH}|$ decreases with L_g
 - Effect is exacerbated by high values of $|V_{DS}|$

- Qualitative explanation:
 - The source & drain p-n junctions assist in depleting the Si underneath the gate. The smaller the L_g , the greater the percentage of charge balanced by the S/D p-n junctions:

Why New Transistor Structures?

- DIBL must be suppressed to scale down L_q
- Leakage occurs in region far from channel surface

Thin-Body MOSFETs

- Leakage is suppressed by using a thin body $(T_{Si} < L_g)$ - Channel doping is not needed \rightarrow higher carrier mobility
- Double-gate structure is more scalable (to L_a<10nm)

Double-Gate "FinFET"

EE105 Fall 2007

Lecture 27, Slide 19

Prof. Liu, UC Berkeley

15 nm L_g FinFETs

Y.-K. Choi et al. (UC Berkeley), IEDM Technical Digest, pp. 421-424, 2001

 $T_{Si} = 10 \text{ nm}; T_{ox} = 2.1 \text{ nm}$

10 nm L_g FinFETs

B. Yu et al. (AMD & UC Berkeley), IEDM Technical Digest, pp. 251-254, 2002

MOSFET Scaling Scenario

• Advanced structures will enable Si MOSFET scaling to L_g <10 nm

The End is Not the Limit !

EECS 105 in the Grand Scheme

EE105 Fall 2007