
Power Dissipation

Power Dissipation Active Versus Passive Power "On" and "Off" Currents High–K Dielectrics Low-K Dielectrics

CMOS Power Dissipation

- CMOS is popular because it is a low power technology
- The main power dissipation occurs during switching

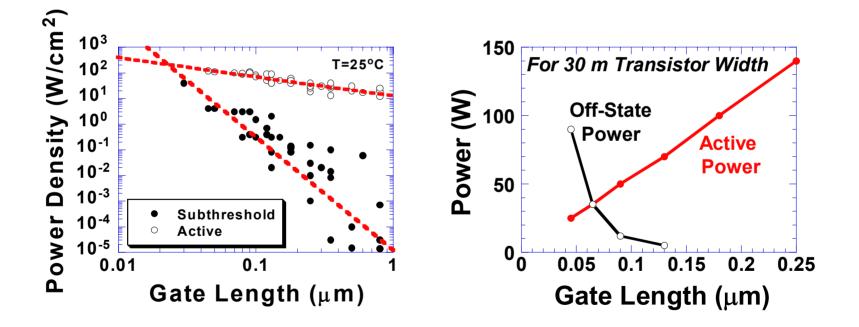
 CV_{DD}^{2} total power dissipated

CMOS Power Dissipation

Power dissipation sources:

$$\boldsymbol{P} = \boldsymbol{P}_{switch} + \boldsymbol{P}_{sc} + \boldsymbol{P}_{off}$$

$$P_{switch} = \alpha f C V_{DD}^2; P_{sc} = I_{sc} V_{DD}; P_{off} = I_{off} V_{DD}$$

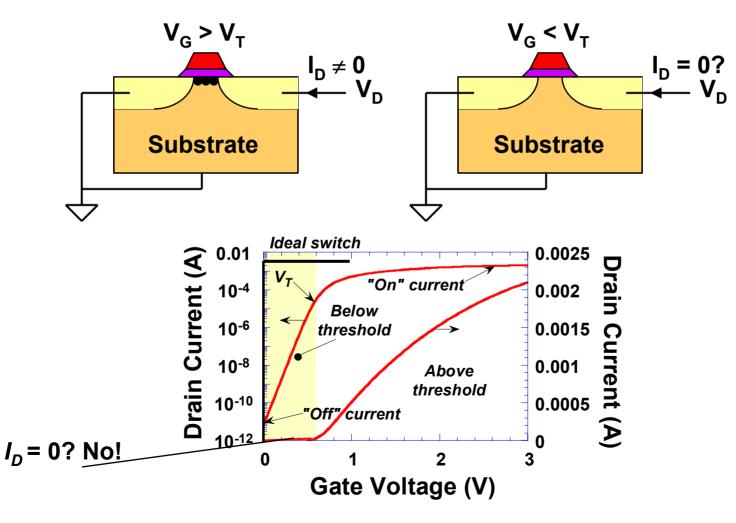

 α : switching activity; I_{sc} : short circuit path when n and p-channel MOSFETs are "on" I_{off} : drain leakage current and subthreshold leakage current when device is "off"

Reduce power by reducing

- Supply voltage V_{DD} \Downarrow ; need to reduce V_{T} to maintain drive current
- Capacitance C
- Off current I_{off} depends on V_T
- Frequency $f \Downarrow$; parallel architectures

Active Versus Passive Power

• As V_T decreases, I_{off} increases $\Rightarrow P_{off}$ increases



E.J. Nowak, IBM J. Res. Dev. 46, 169 (2002)

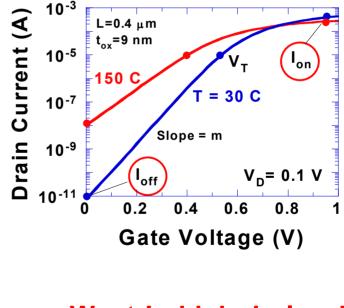
B. Doyle, Intel Technol. J. 41 (May 2002)

MOSFET Switch

In a digital circuit, a MOSFET is frequently used as a switch

"On" – "Off" Current

Subhreshold


Subthreshold slope = m; Subthreshold swing S = 1/m

$$I_D = I_T \mathbf{e}^{q(V_G - V_T)/nkT}$$
$$I_{off}(V_G = \mathbf{0}) = I_T \mathbf{e}^{-qV_T/nkT}$$

$$S = \frac{dV_G}{d[\log(I_D)]} = \frac{2.3nkT}{q}$$
$$= 60n(T/300) mV/decade of I_D$$

Above threshold

$$\boldsymbol{I}_{Dsat} = \boldsymbol{I}_{on} = \frac{\boldsymbol{W}\mu_{eff}\boldsymbol{C}_{ox}}{2\boldsymbol{L}}(\boldsymbol{V}_{G} - \boldsymbol{V}_{T})^{2}$$

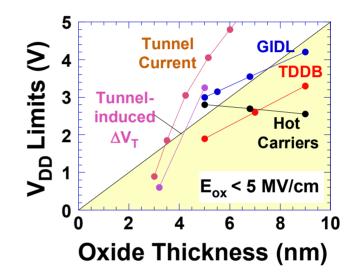
Want I_{on} high, I_{off} low !

"On" Current

- W/L ~ constant
- $\mu_{eff} \sqrt[]{}$

Reduced drive current

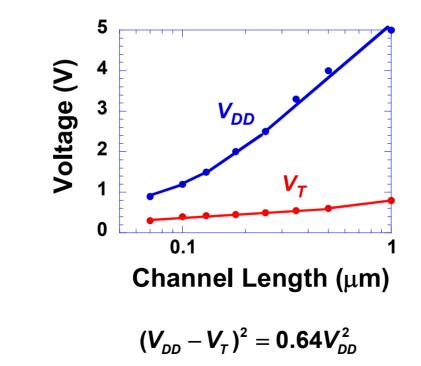
- V_G ↓
 - Reduced electric field
 - Reduced power
 - Reduced drive current
 - Increased delay time
- V₇ ∿
 - Increased drive current
 - Increased "off" current


$$\boldsymbol{I}_{on} = \frac{\boldsymbol{W}}{2\boldsymbol{L}} \boldsymbol{\mu}_{eff} \boldsymbol{C}_{ox} (\boldsymbol{V}_{G} - \boldsymbol{V}_{T})^{2}$$

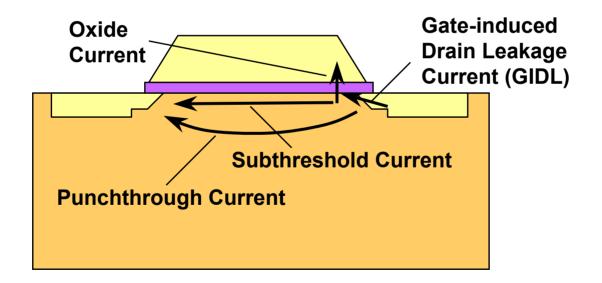
- C_{ox} û since t_{ox} ↓
 - Increased drive current
 - Oxide leakage current
 - Boron penetration

Ion should not decrease!

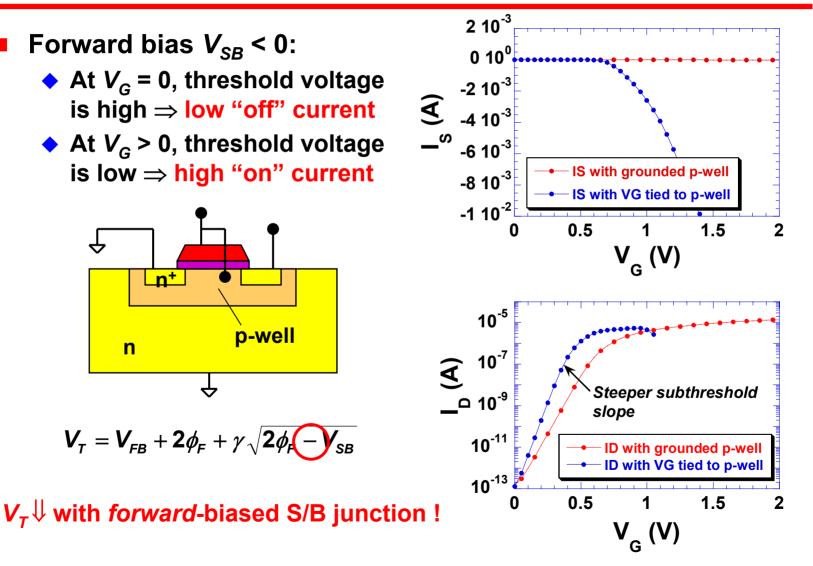
Power Supply Voltage Limit


- *E_{ox}* ≈ 4 5 MV/cm
- Power supply voltage is limited by
 - Power dissipation
 - Oxide leakage current
 - Gate-induced drain leakage current (GIDL)
 - Time-dependent dielectric breakdown
 - Hot carrier effects
 - Delay time

Data after: T. Hori, *Gate Dielectrics and MOS ULSIs*, Springer, 1997.

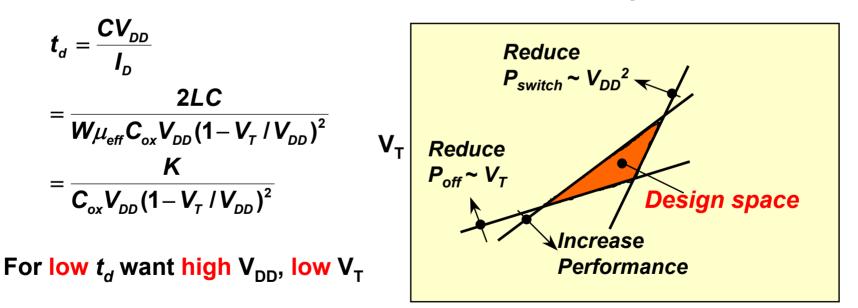

Threshold and Supply Voltages

- How has V_T changed with V_{DD}? Less than called for by scaling rules
- V_{DD} V_T is continually decreasing



"Off" Current

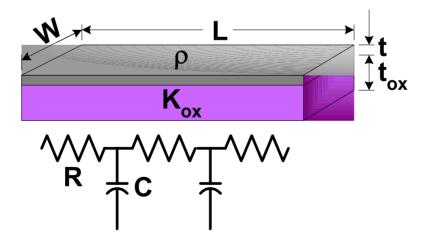
The "off" current is due to subthreshold, punchtrough, gate-induced drain leakage, and oxide currents



Positive Substrate Bias

Propagation Delay Time

- Conflicting design requirements between reducing V_{DD}, V_T, I_{leak}, C, and increasing performance
- The propagation delay time is $t_d = \frac{C \Delta V}{I}$



V_{DD}

Low - K Dielectrics

- Propagation delay along interconnects requires reduced K_{ox}
- Ideally K = 1 (air)
- Practically K < 3.5</p>

$$\tau = \mathbf{R}\mathbf{C} = \frac{\rho \mathbf{L}}{\mathbf{W}t} \frac{\mathbf{K}_{ox} \varepsilon_{o} \mathbf{L} \mathbf{W}}{\mathbf{t}_{ox}} = \frac{\rho \mathbf{K}_{ox} \varepsilon_{o} \mathbf{L}^{2}}{\mathbf{t}_{ox}}$$

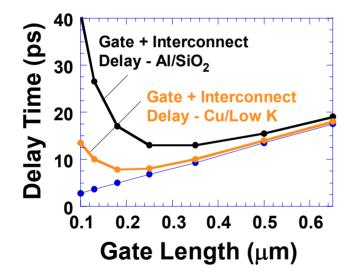
Need low ρ and low K_{ox}

Low - K Dielectrics

Low-K dielectrics reduce wiring capacitance ⇒ reduce power

 $P = \alpha C f V^2$

- Low-K dielectrics tend to be "fluffy"
- To reduce the dielectric constant, introduce air pockets into the material
 - Dielectric constant
 - Hardness
 - Adhesion
 - Thermal expansion
 - Process compatibility
 - Swelling


Low – K Materials

K Value	Organic Polymers	Silsesquioxane Based	Silica Based
4.2			SiO ₂
3 – 4		FOX™	Fluorinated Silica
2.4 – 3	FLARE™	HOSP™	Aurora™
	BCB		Coral™
	SiLK™		Z3MS™
			Black Diamond™
2 – 2.4	Porous SiLK™	IPS™	Orion™
	PTFE	LKD™	Nanoglass™
		XLK™	
		Zirkon™	
< 2			Aerogel
			Xerogel

K. Maex et al., "Low Dielectric Constant Materials for Microelectronics," *J. Appl. Phys.* **93**, 8793-8841, June 2003.

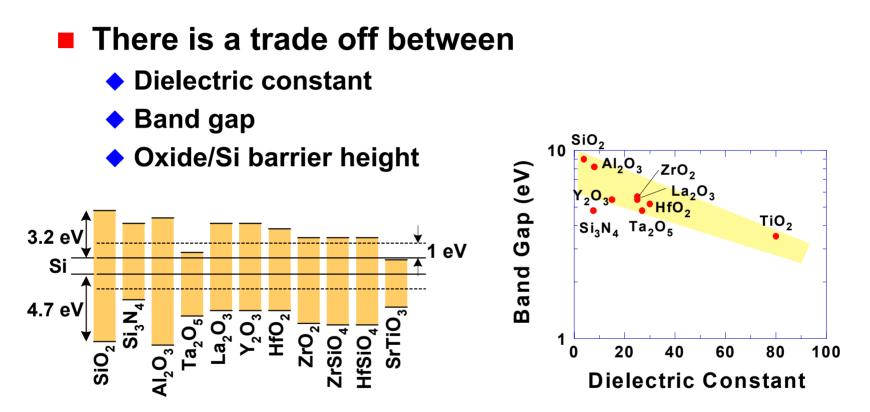
Propagation Delay

Propagation delay depends on metal conductivity and interlevel dielectric constant

AI: $\rho = 3 \mu\Omega$ -cm Cu: $\rho = 1.7 \mu\Omega$ -cm SiO₂: $K_{ox} = 4$ Low K: $K_{ox} = 2$ AI/Cu: 0.8 μm thick AI/Cu: 43 μm long

Why do we need high-K dielectrics?

$$I_{D} = \frac{W\mu_{eff}C_{ox}}{L}(V_{G} - V_{T})^{2} = \frac{W\mu_{eff}K_{ox}\mathcal{E}_{o}}{Lt_{ox}}(V_{G} - V_{T})^{2}$$


- With scaling
 - W and L decrease same amount
 - \bullet μ_{eff} remains about the same or decreases
 - ♦ (V_G-V_T) decreases
- To keep drain current constant
 - *t_{ox}* decreases oxide leakage current increases
 - *K_{ox}* increases thicker insulator, reduced oxide leakage current

- The dielectric constant, band gap and dielectric/Si barrier height are important
- Tunneling probability

$$\boldsymbol{T} = \exp\left(-2t_{\rm ox}\sqrt{\frac{2q\boldsymbol{m}^{*}\boldsymbol{\phi}_{\rm B}}{\hbar^{2}}}\right)$$

Need

- High dielectric constant
- High band gap
- High barrier at insulator/Si interface
- Low leakage current
- High reliability
- Good insulator/Si interface quality
- Low flatband voltage shift

HfO₂ and nitrided HfO₂ most promising

J. Robertson, J. Vac. Sci. Technol. B18, 1785 (2000)

Problems

- Low band gap
- Low barrier height
- Poor insulator/Si interface
 - Thin intervening SiO₂ layer
- Oxide charge
- Low electron/hole mobility
 - Strained Si
- MOS process compatible ?

- What determines CMOS power dissipation?
- What are "on" and "off" currents
- What determines propagation delay time?
- Why do we need low-K dielectrics?
- Why do we need high-K dielectrics?
- What are the conflicting demands of high on current and low off current?
- What are the conflicting demands of CMOS power dissipation and propagation delay time?