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CMOS Power DissipationCMOS Power Dissipation
CMOS is popular because it is a low power technology
The main power dissipation occurs during switching
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CMOS Power DissipationCMOS Power Dissipation
Power dissipation sources:

Reduce power by reducing
Supply voltage VDD ⇓; need to reduce VT to maintain 
drive current
Capacitance C
Off current Ioff - depends on VT

Frequency f ⇓; parallel architectures

α: switching activity; Isc: short circuit path when n and p-channel MOSFETs are “on”
Ioff: drain leakage current and subthreshold leakage current when device is “off”
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Active Versus Passive PowerActive Versus Passive Power

As VT decreases, Ioff increases ⇒ Poff increases
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MOSFET SwitchMOSFET Switch
In a digital circuit, a MOSFET is frequently used as a switch
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“On” “On” –– “Off” Current“Off” Current
Subhreshold

Subthreshold slope = m; Subthreshold swing S = 1/m

Above threshold
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“On” Current“On” Current
W/L ~ constant
µeff

Reduced drive current
VG

Reduced electric field
Reduced power
Reduced drive current
Increased delay time

VT
Increased drive current
Increased “off” current

2)(
2 TGoxeffon VVC
L

WI −= µ

(VG-VT) 
Reduced drive current

Cox since tox
Increased drive current
Oxide leakage current
Boron penetration

Ion should not decrease!



Power Supply Voltage LimitPower Supply Voltage Limit

Eox ≈ 4 - 5 MV/cm
Power supply voltage is 
limited by

Power dissipation
Oxide leakage current
Gate-induced drain 
leakage current (GIDL)
Time-dependent dielectric 
breakdown
Hot carrier effects
Delay time
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Threshold and Supply VoltagesThreshold and Supply Voltages
How has VT changed with VDD? Less than 
called for by scaling rules
VDD - VT is continually decreasing
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“Off” Current“Off” Current
The “off” current is due to subthreshold, 
punchtrough, gate-induced drain leakage, and 
oxide currents
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Positive Substrate BiasPositive Substrate Bias
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VT ⇓ with forward-biased S/B junction !
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Propagation Delay TimePropagation Delay Time
Conflicting design requirements between 
reducing VDD, VT, Ileak, C, and increasing 
performance 
The propagation delay time is I
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Low Low -- K DielectricsK Dielectrics
Propagation delay along interconnects requires reduced Kox

Ideally K = 1 (air)
Practically K < 3.5
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Low Low -- K DielectricsK Dielectrics
Low-K dielectrics reduce wiring capacitance                   
⇒ reduce power

P = αCfV2

Low-K dielectrics tend to be “fluffy”
To reduce the dielectric constant, introduce air pockets 
into the material

Dielectric constant
Hardness
Adhesion
Thermal expansion
Process compatibility
Swelling



Low Low –– K MaterialsK Materials

Xerogel
Aerogel< 2

Zirkon™
XLK™

Nanoglass™LKD™PTFE
Orion™IPS™Porous SiLK™2 – 2.4

Black Diamond™
Z3MS™SiLK™
Coral™BCB

Aurora™HOSP™FLARE™2.4 – 3
Fluorinated SilicaFOX™3 – 4

SiO24.2

Silica BasedSilsesquioxane
Based

Organic PolymersK Value

K. Maex et al., “Low Dielectric Constant Materials for Microelectronics,” 
J. Appl. Phys. 93, 8793-8841, June 2003.



Propagation DelayPropagation Delay
Propagation delay depends on metal conductivity and 
interlevel dielectric constant
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High High -- K DielectricsK Dielectrics
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Why do we need high-K dielectrics?

With scaling
W and L decrease same amount
µeff remains about the same or decreases
(VG-VT) decreases

To keep drain current constant
tox decreases – oxide leakage current increases
Kox increases – thicker insulator, reduced oxide 
leakage current



High High -- K DielectricsK Dielectrics
The dielectric constant, band gap and 
dielectric/Si barrier height are important
Tunneling probability

Need
High dielectric constant
High band gap
High barrier at insulator/Si interface 
Low leakage current
High reliability
Good insulator/Si interface quality
Low flatband voltage shift 
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High High -- K DielectricsK Dielectrics
There is a trade off between

Dielectric constant
Band gap
Oxide/Si barrier height 
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High High -- K DielectricsK Dielectrics

Problems
Low band gap
Low barrier height
Poor insulator/Si interface

Thin intervening SiO2 layer
Oxide charge
Low electron/hole mobility

Strained Si

MOS process compatible ?



Review QuestionsReview Questions

What determines CMOS power dissipation?
What are “on” and “off” currents
What determines propagation delay time?
Why do we need low-K dielectrics?
Why do we need high-K dielectrics?
What are the conflicting demands of high on
current and low off current? 
What are the conflicting demands of CMOS 
power dissipation and propagation delay time?
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