
High Speed Design Techniques in SoC –

From Architecture to layout

Dr. Danny Rittman, April 2004

Abstract

System-on-a-chip (SoC) ASIC technology is one of the most effective ways to
produce high-speed, low-power products. Various techniques can be used to reduce
the power consumption and increase the speed of SoC designs. The continuing
advances in process technology give us the ability, in principle, to design ever-more-
complex systems-on-chip at higher speeds. Hence those complexities, combined with
the more complex device and interconnect models that these processes require,
create a design crisis in which designers spend more and more time on iterating
through cycles of synthesis, place and route, physical design and verification.
System-on-chip solutions typically include high-speed, high-bandwidth mixed-signal
interfaces; large, complex digital blocks that implement multilayer protocols; and
significant amounts of on-chip memory. Designers of those devices push the limits of
our EDA tools.

Generating a design that is truly correct by construction, we need a design flow that
can predict physical-layout parameters based on accurate models early in the design
process. If that proves intractable, we may need to develop a radically new approach
in which we give up some measure of density and performance in order to achieve
reasonable design times, just as we did in the transition from full-custom to standard
cells. Next-generation communication applications present some of the more
challenging issues in IC design due to its high speed nature. The constant demand
for higher speeds in SoC creates an entire world of challenges for designers.

The Evolution of platform-based SoC designs

Initially, ASICs were used to replace glue logic. These were assembled manually as a

Power considerations in SoC’s - Source: EETimes June 2002

schematic at the transistor or gate level with almost no reuse of previously used
logic or functions. With the rise of RTL languages such as Verilog and VHDL, EDA
tools emerged to simulate and synthesize logic from an RTL description to a gate-
level netlist. Reusability emerged in cell-based libraries and portions of reusable HDL
code. The ability to reuse HDL functional code from one design to the next led to the
beginnings of a block-based design methodology. Blocks could be described in RTL,
synthesized into gates and laid out in a physical implementation as virtual
components (VC) referred to as soft, firm or hard cores.

The advancement of process technology approaching 60 nm from 0.13 micron only a
few years ago has opened up a significant number of new applications that can be
integrated onto a single chip. Complexities of few millions gates are now moving to
ten’s million-plus gates with hundreds million gates in sight. It would be a challenge
to simply maintain the design cycles of 8 to 16 months of a few years ago with this
increased complexity. However, demand in consumer and communications products
for new features and capabilities is driving market windows down; the upshot is that
those 8- to 16-month design cycles are now approaching even shorter time with
derivative products requiring shorter introduction times. Consumers are demanding
more functionality in smaller packages at a lower price, which is yielding to the
requirement for full systems to be integrated onto a single chip, known as system-
on-chip, or SoC.

The definition of SoC as stated by the market-research firm Dataquest Inc. is an
embedded processor, memory and a minimum of 100,000 gates of logic to that of a
complex IC that integrates the major functional elements of a complete end product
into a single chip or chip set. Typically, an SoC product contains at least one
embedded programmable processor, on-chip memory, additional functional blocks

Source: National Semiconductors 2003

with off-chip interfaces to memory and real world communications framed with an
SoC integration architecture or busing scheme. SoC designs include both hardware
and software components that together implement the desired system functionality.
Examples of SoC applications include cellular phones, PDAs, set-top boxes, portable
consumer and Internet appliances, automotive engine controllers and network
switches.

To meet the demands of SoC, reusability must encompass greater amounts of IP.
Block-based reuse has yielded to subsystem reuse, and platform-based reuse is
coming on. Platform-based design offers high productivity through extensive
intentional reuse of known verified VCs that have undergone integration as a base
SoC integration platform. Using this platform, or application-specific SoC integration
platform, follow-on derivative products are created by adding or replacing the blocks
that implement the derivative feature sets.

SoC Architecture

Any processor-driven SoC product requires a number of architectural functions.
These include timers, DMA engines, interrupt controllers and memory controllers. In
many cost-sensitive applications, a shared memory structure can be utilized to
reduce memory component costs. Architecture is needed that addresses the memory
needs of all devices without severely degrading the performance of any single device
and yet offer flexibility to address a variety of architectures to support a wide range
of applications. Proposed integration architecture should display the following
attributes:

• Foundry, processor and technology independence
• Centered around shared memory
• Flexible to address a variety of SoC architectures
• Modular for a plug-and-play modification environment
• Easily synthesizable and works with standard design tools

Platform-based SoC design should not offer a burden when directed to different
foundries and fabrication process rules. If the product has to be recoded to support
another library, one of the major benefits of platform-based design is lost: time-to-
market. Processor independence allows derivative applications to embed a processor
that best fits those applications requirements. A processor-centric architecture
makes this difficult; a memory-centric architecture reduces the problem of
embedding a new processor typically to that of replacing the processor local bus
bridge, usually only a matter of a few hundred gates.

The flexibility of the architecture allows derivative platform designs to change the
number and type of peripheral blocks as well as the type of processor supported, for
example a Von Neumann vs. a Harvard-type processor. Modularity is a key to
making derivative changes efficiently and should provide a plug-and-play
development environment so that derivative platforms are capable of being spun off
relatively quickly. Obviously, if the architectural components are not able to work
efficiently with today’s design tools and environment, efficient derivative designs will
not be possible. This means that common bus attributes such as tri-stating, dual-
edge clocking of signals, bus keepers and complex signal protocols make efficient
use of design tools difficult.

One SoC architecture that has been offered to meet these criteria Palmchip's
CoreFrame SoC Integration Architecture. It was designed with a blank sheet
specifically to optimize it to SoC development and performance, rather than
migrating a motherboard and bus model. As such, concerns such as routing and
addressing that are important in motherboard design become irrelevant, while on-
chip ones such as simplified design and interfacing can be optimized. The
architecture does not use the traditional bidirectional bus concepts, which eliminates
the need for tri-state bidirectional bus drivers. This enhances performance and
simplifies on-chip design and verification using standard ASIC design tools.

Communication takes place through "channels" rather than on generic buses. The
channel hardware transparently handles address and speed differences among
various IP modules, allowing virtually any core to be used by simply providing a
channel interface socket, which handles protocol, clock domain, bursting and
bandwidth matters. Cores plug in to sockets in the CoreFrame architectural model.
The socket channel model is set up to keep to a basic ASIC development flow and
tools, which simplifies connecting IP modules into the architecture. DMA
communications, CPU instruction and data fetching take place on separate channels,
allowing independent high-speed data movement without tying up the CPU bus. Each
peripheral appears to software as a FIFO, a relatively simple interfacing standard
that facilitates quick and easy construction of the system. The channel-based
approach can accommodate multiple clock domains through synchronization FIFOs to
allow speed matching without loss of throughput.

High Speed SoC Designs

When talking about high performance, high speed design we have to keep in mind
the basic key rule; High Performance = Low Power! One efficient solution is a
system-on-chip (SoC) application specific integrated circuit (ASIC). The SoC ASIC
provides the optimal mix between hardware and software, allowing functional
components to be partitioned to provide the best mix of speed and power
enhancements.

In particular, components that can gain from the benefits of hardware
implementation will be implemented in hardware accelerators and discrete logic.
Software is written to provide the necessary hardware initialization and
configuration, but many time-extensive, number crunching operations (such as
power-hungry) are provided by the hardware. The tradeoff is that programmability
will be limited to the flexibility of the hardware accelerators. Considering lower power
consumption, resulting higher speeds may be an acceptable compromise for many
power conscious applications. Additional hardware interfaces, as well as software
functionality, will help offset any programmability concerns.

SoC Speed Enhancement (Power reduction) techniques

Various techniques can be used to increase SoC speeds and to reduce the power
consumption of SoC ASIC designs, including dynamic frequency control, dynamic
power management and the ability to idle embedded processors. These techniques
were developed during the past decade with the rapid evolution of SoC.

Dynamic frequency control

A SoC ASIC external reference clock and internal clock generator can be used to
provide dynamic frequency control. The reference clock frequency is proportionally
related to the SoC ASIC's power consumption (e.g. lower reference clock frequency
results in lower power consumption).

The reference clock is provided by the system (host) and can be scaled (externally)
based on the intended mode of operation. An internal clock generator can also be
used to scale system clock frequencies (and power consumption) dependent on the
desired mode of operation. This internal clock generator will contain a Phased Lock
Loop circuitry (PLL) used for setting the internal clock rate.

The PLL logic contains three programmable dividers designated as reference,
feedback, and output. The maximum and minimum values of the reference clock
frequency input and the VCO output affect the phase jitter, which affects the ASIC's
performance. Figure 1 shows a sample PLL-based variable clock-generator circuit.

Disabling, or turning-off, the internal clock to unused or idled functional SoC ASIC
sub-blocks will decrease the amount of power consumed. For example, every piece
of logic hardware (or gate) that is clocked will consumes some amount of power. By
applying the appropriate amount of dynamic clock control or power management,
the amount of power consumption can be reduced significantly for a specific mode of
operation.

Dynamic power management

Dynamic power management requires some degree of up-front planning and
organization. The SoC ASIC needs to be divided into the appropriate functional
blocks to ensure that the maximum benefit can be achieved by disabling a specific
piece of the hardware design.

The SoC ASIC will need to contain the logic necessary to control power up, power
down, and reset of individual function blocks. This may include a clock tree register
that enables or disables the clock to a specific functional block.

Each functional block can be powered down by setting the appropriate power down
bit in this register that disables the clock to that block. Each functional block can also
be initialized to a known state by setting the reset bit. Dynamic power management
is an internal SoC ASIC function controlled by external software.

Idling embedded processors

Some SoC ASIC designs contain an embedded processor. Software is written for this
processor to perform the necessary configuration and control operations. Most
modern-day embedded processors contain an instruction that will place the
processor into an idle, or sleep, state. Once the processor enters this state, only an
external stimulus (such as defined interrupt) can wake-up the processor.

The processor will consume a very minimal amount of power while in the idle state.
This low power consumption is a benefit for SoC ASIC designs assuming that no, or
limited, software intervention is required for a particular function.

Once the SoC ASIC has been configured, the processor can idle itself and only be
utilized during specific times (such as initialization or mode change). A complete up-
front system design and hardware/software partitioning is required to reap the
maximum benefits of processor idling.

SoC Challenges

Fig. 1 below represents a generic SOC block diagram that shows many of the
challenges of SOC design and the limitations of conventional approaches to
implementing SOCs. The device illustrated contains:

 One or more high-speed input datastreams (for example, network traffic for a
router chip, video input from a sensor chip for a Camcorder, or cell data
packets from a radio IC in a wireless device)

 A series of high-performance, algorithm-intensive compute engines that
perform the heavy lifting of the computing load inside the chip. For the three
examples listed above, the required processing would be packet processing
and classification for the networking case, video scaling and compression in
the camcorder, and filtering and channel coding in the wireless device. These
elements are implemented in hardwired logic using traditional RTL design
methodologies.

 A conventional rigid-ISA embedded CPU core that runs an operating system,
performs general housekeeping tasks, and executes some of the lower-
complexity algorithms. This CPU requires a closely-coupled hardware
accelerator, which was also designed using RTL methodology, to accelerate
the key inner loops of the algorithms that run on the CPU because the rigid-
ISA limits the CPU’s performance to a level well below what’s required.

 A programmable co-processor, which is typically a conventional 16-bit DSP for
signal processing functions. While perhaps not applicable in the networking
example, the DSP might perform audio encoding in the camcorder or voice
coding in the wireless device.

 A series of peripheral device controllers connected to the main CPU bus via a
bus bridge.

Fig. 1

Source: Tensillica

Hi Speed SoC Physical Design Challenges

When describing the complexity of VDSM systems on chip (SoCs), most engineers
tend to refer to a combination of gate count, amount of embedded memory, and
frequency of operation. If one's task is to assess the complexity of the physical
design effort for a given SoC, then there are numerous additional factors that can
create challenges far more significant than the sheer size or frequency of the design.
Especially with high speed SoC ASIC designs!

The SoC physical design challenges are a direct result of the following design
features:

• The increasing complexity of single-chip systems means that a design must be
hierarchically partitioned into modules of a size that can be effectively managed by a
designer and efficiently processed by the tools.

• New fine-line-width CMOS technologies can no longer be characterized by the
simple physical models that were used in previous generations. Complex second-
order effects (resistance, inductance, crosstalk, leakage, electromigration and the
like) are not easily modeled above the physical layer.

• Higher-level tools run efficiently on small blocks but must use closely approximate
models of any parameter affected by the final physical layout.

• Problems that are not identified until chip-level physical layout is complete lead to
long verify-modify-redesign-reassemble-re-verify loops that consume enormous
amounts of design time.

• Floorplanning is a crucial factor. The capability to efficiently provide the optimal
floorplanning is essential to the SoC yield and performance. Early physical planning
of big SoC designs is a pre-requisite. An early floorplan showing location of the high
speed I/O, block and memory location quickly gives an idea of the feasibility of the
physical design and goes one stage further than the RTL Analysis tools.

Reliability Issues

Many of the reliability issues are already addressed via tool automation and
methodology changes. These include:

1. Metal antennae effects - where an electron charge can build up on long nets
during manufacturing and blows up the transistor connected to it. Avoided by
inserting diodes or adding metal jogs to the routing to force a layer change. The
latter can cause many extra vias in the layout which has its own reliability issues if
not carefully controlled.

2. Metal Slotting effects – this is where wide wires cause “metal dishing” effects due
to processing limitations. Avoided by splitting wide wires.

3. Simultaneously Switching Outputs (SSO) – where noise is injected into the power
rails from many output changes at the same time and causes false signal values.
Avoided by adding power/ground pads and by I/O isolation.

4. Soft Errors – Alpha particles, both naturally occurring and from lead in
packaging, can cause state inversion of a flip-flop or memory element. With
shrinking technology the charge induced becomes more significant. Avoided by
hardened flip-flops, error correction built into the memories and by fault tolerant
system architectures.

5. Memory yield – With memory taking an ever-larger proportion of the die, roughly
60% in the example above, overall good die per wafer will be lower than with pure
logic. Avoided by adding redundant rows/columns and using Built-In Self Repair
(BISR) with the larger embedded memories.

6. Electromigration (EM) is a key reliability effect that will worsen in 90nm. EM is
caused by decreasing metal widths and increasing current density. When
overstressed metal ions tend to migrate over time eventually causing the connection

to break. LSI Logic runs “lsisignalem” after placement to set routing rules to ensure
that metal and via structures are robust enough to avoid the EM issues that can
occur on signal nets. Post route checking is also performed to ensure that the
avoidance was successful.

Additional known issues that are successfully covered by recent EDA tools technology
are time propagation delay, crosstalk, clocks skew, and voltage drop and database
size. When looking at volume production requirements the need for lowest cost, smallest die,
lowest power and fastest speed will always push SoC design teams to the leading edge of
technology. Foundries are already running early 90nm silicon at an R&D level and early SPICE
rules are already available.

Conclusion

Using advanced techniques and through the proper partitioning and classification of
hardware and software requirements, optimal High Speed SoC ASICs can be
designed and developed. Dynamic frequency and clock control, processor idling and
functional grouping are common techniques to provide low power consumption for
High Speed SoC ASIC designs. The physical design stage of SoC has become more
complex due to the VDSM phenomenon, yet the new generation of EDA tools are
providing a successful solution. While some may believe the industry is at its lowest stage
for years there is already a wide variety of VDSM Hi Speed SoC infrastructures being put in
place that will yield leading edge products within the next decade.

References

M.R. Stan, Wayne P. Burleson. Bus-Invert Coding for Low Power I/O. IEEE
Transactions on Very Large Scale Integration Systems, 1995.

A. Malik, B. Moyer, D. Cermak. A Programmable Unified Cache Architecture for
Embedded Applications. International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, 2000.

D.H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation.
MICRO, 1999.

S.M. Kang. Accurate Simulation of Power Dissipation in VLSI Circuits. IEEE Journal of
Solid-State Circuits, vol. CS21, no. 5, 1986.

G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for Short- Circuit Power
Dissipation Based on Current Component Isolation. International Symposium on
Circuits and Systems, 1989.

R. Tjarnstorm. Power Dissipation Estimate by Switch Level Simulation. International
Symposium on Circuits and Systems, 1989.

T.H. Krodel. PowerPlay - Fast Dynamic Power Evaluation Based on Logic Simulation.
International Conference on Computer Aided Design, 1991.

E. Macii, M. Pedram. High-Level Power Modeling, Evaluation, and Optimization. IEEE
Transactions on Computer Aided Design, vol. 17, no. 11, 1998.

D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic Measures for Power
Analysis. IEEE Transactions on Computer Aided Design, vol. 15, no. 6, 1996.

M. Nemani, F. Najm. Toward a High Level Power Evaluation Capability. IEEE
Transactions on Computer Aided Design, vol. 15, no.
6, 1996.

V. Tiwari, S. Malik, A. Wolfe. Power Analysis of Embedded Software: A First Step
Toward Sofware Power Minimization. IEEE Transactions on Very Large Scale
Integration Systems, vol. 2, no. 4, 1994.

C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven Program Synthesis for
Evaluation of System Power Dissipation. Design
Automation Conference, 1997.

C. Barndolese, W. Fornaciari, F. Salice, D. Sciuto. Energy Evaluation for 32-bit
Microprocessor. International Workshop on Hardware/Software Co-Design, 2000.

R.J. Evans, P.D. Franzon. Energy Consumption Modeling and Optimization for SRAMs,
IEEE Journal of Solid-State Circuits, vol. 30,
no. 5, 1995.

T. Givargis and F. Vahid. Interface Exploration for Reduced Power in Core-Based
Systems, International Symposium on System Synthesis, 1998.

E. Boemo, “Some Notes on Power Management on FPGA-based Systems,” Lecture
Notes in Computer Science, No. 975, pp. 149-157 (Berlin: Springer-Verlag 1995).

N. Sklavos, “Low-Power Implementation of an Encryption/Decryption System with
Asynchronous Techniques,” VLSI Design, vol. 15, Issue 1, 2000, pp. 455-468.

R. Schmalbach, “Specifications for Sierra II ASIC,” 12016-0317, rev 5.1, February
2003.

The RTL Virtual Prototype, Gary Smith, Principal Analyst, Dataquest. April 22, 1996

Reuse Methodology Manual for SoC Designs, Second Edition, Michael Keating
Synopsys, Inc - Pierre Bricaud, Mentor Graphics Corp, Kluwer Academic Publishers

IP RTL versus FPGA Optimized Netlist Functional Equivalence, Alexa Vignollet and
Pierre Bricaud, Mentor Graphics Corp, IP Based Design 2000 Proceedings

Nuts and Bolts of Core and SoC Verification, Ken Albin, Motorola, Inc, Austin, TX

B. Ackland et al., “A Single Chip, 1.6-Billion, 16-b MAC/s Multiprocessor DSP,” IEEE
J. Solid-State Circuits, Mar. 2000, pp. 412-424.
A. Agrawal, “Raw Computation,” Scientific Am., Aug. 1999, pp. 60-63. January 2002
77

L. Benini and G. De Micheli, “System-Level Power Optimization: Techniques and
Tools,” ACM Trans. Design Automation of Electronic Systems, Apr. 2000, pp. 115-
192.

R. Hegde and N. Shanbhag, “Toward Achieving Energy Efficiency in Presence of Deep
Submicron Noise,” IEEE Trans. VLSI Systems, Aug. 2000, pp. 379-391.

W. Dally and J. Poulton, Digital Systems Engineering, Cambridge Univ. Press, New
York, 1998.

J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering
Approach, IEEE CS Press, Los Alamitos, Calif., 1997.

P. Guerrier and A. Grenier, “A Generic Architecture for On-Chip Packet-Switched
Interconnections,” Proc. IEEE Design Automation and Test in Europe (DATE 2000),
IEEE Press, Piscataway, N.J., 2000, pp. 250-256.

R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proc. IEEE, Apr. 2001, pp.
490-504.

D. Sylvester and K. Keutzer, “A Global Wiring Paradigm for Deep Submicron Design,”
IEEE Trans. CAD/ICAS, Feb. 2000, pp. 242-252.

Todd Moore and Rick Schmalbach Sep 1, 2003 - RFDesign

T. Theis, “The Future of Interconnection Technology,” IBM J. Research and
Development, May 2000, pp. 379-390.

J. Walrand and P. Varaiya, High-Performance Communication Networks, Morgan
Kaufmann, San Francisco, 2000.

H. Zhang et al., “A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband
Digital Signal Processing,” IEEE J. Solid-State Circuits, Nov. 2000, pp. 1697-1704.

Down to the Wire, Lavi Lev et al, Cadence
http://www.cadence.com/feature/pdf/4064_NanometerWP_fnlv2.pdf

Failures plague 130-nanometer IC processes, Ron Wilson, EETimes
http://www.eetimes.com/story/OEG20020826S0022

