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Abstract 
 
System-on-a-chip (SoC) ASIC technology is one of the most effective ways to 
produce high-speed, low-power products. Various techniques can be used to reduce 
the power consumption and increase the speed of SoC designs. The continuing 
advances in process technology give us the ability, in principle, to design ever-more-
complex systems-on-chip at higher speeds. Hence those complexities, combined with 
the more complex device and interconnect models that these processes require, 
create a design crisis in which designers spend more and more time on iterating 
through cycles of synthesis, place and route, physical design and verification. 
System-on-chip solutions typically include high-speed, high-bandwidth mixed-signal 
interfaces; large, complex digital blocks that implement multilayer protocols; and 
significant amounts of on-chip memory. Designers of those devices push the limits of 
our EDA tools.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Generating a design that is truly correct by construction, we need a design flow that 
can predict physical-layout parameters based on accurate models early in the design 
process. If that proves intractable, we may need to develop a radically new approach 
in which we give up some measure of density and performance in order to achieve 
reasonable design times, just as we did in the transition from full-custom to standard 
cells. Next-generation communication applications present some of the more 
challenging issues in IC design due to its high speed nature. The constant demand 
for higher speeds in SoC creates an entire world of challenges for designers. 

The Evolution of platform-based SoC designs 

 
Initially, ASICs were used to replace glue logic. These were assembled manually as a 
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schematic at the transistor or gate level with almost no reuse of previously used 
logic or functions. With the rise of RTL languages such as Verilog and VHDL, EDA 
tools emerged to simulate and synthesize logic from an RTL description to a gate-
level netlist. Reusability emerged in cell-based libraries and portions of reusable HDL 
code. The ability to reuse HDL functional code from one design to the next led to the 
beginnings of a block-based design methodology. Blocks could be described in RTL, 
synthesized into gates and laid out in a physical implementation as virtual 
components (VC) referred to as soft, firm or hard cores.  

The advancement of process technology approaching 60 nm from 0.13 micron only a 
few years ago has opened up a significant number of new applications that can be 
integrated onto a single chip. Complexities of few millions gates are now moving to 
ten’s million-plus gates with hundreds million gates in sight. It would be a challenge 
to simply maintain the design cycles of 8 to 16 months of a few years ago with this 
increased complexity. However, demand in consumer and communications products 
for new features and capabilities is driving market windows down; the upshot is that 
those 8- to 16-month design cycles are now approaching even shorter time with 
derivative products requiring shorter introduction times. Consumers are demanding 
more functionality in smaller packages at a lower price, which is yielding to the 
requirement for full systems to be integrated onto a single chip, known as system-
on-chip, or SoC.  

 

 

 

 

 

 

 

 

 

 

 

 

The definition of SoC as stated by the market-research firm Dataquest Inc. is an 
embedded processor, memory and a minimum of 100,000 gates of logic to that of a 
complex IC that integrates the major functional elements of a complete end product 
into a single chip or chip set. Typically, an SoC product contains at least one 
embedded programmable processor, on-chip memory, additional functional blocks 
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with off-chip interfaces to memory and real world communications framed with an 
SoC integration architecture or busing scheme. SoC designs include both hardware 
and software components that together implement the desired system functionality. 
Examples of SoC applications include cellular phones, PDAs, set-top boxes, portable 
consumer and Internet appliances, automotive engine controllers and network 
switches.  

To meet the demands of SoC, reusability must encompass greater amounts of IP. 
Block-based reuse has yielded to subsystem reuse, and platform-based reuse is 
coming on. Platform-based design offers high productivity through extensive 
intentional reuse of known verified VCs that have undergone integration as a base 
SoC integration platform. Using this platform, or application-specific SoC integration 
platform, follow-on derivative products are created by adding or replacing the blocks 
that implement the derivative feature sets.  

SoC Architecture  

 
Any processor-driven SoC product requires a number of architectural functions. 
These include timers, DMA engines, interrupt controllers and memory controllers. In 
many cost-sensitive applications, a shared memory structure can be utilized to 
reduce memory component costs. Architecture is needed that addresses the memory 
needs of all devices without severely degrading the performance of any single device 
and yet offer flexibility to address a variety of architectures to support a wide range 
of applications. Proposed integration architecture should display the following 
attributes:  

• Foundry, processor and technology independence  
• Centered around shared memory  
• Flexible to address a variety of SoC architectures  
• Modular for a plug-and-play modification environment  
• Easily synthesizable and works with standard design tools  

Platform-based SoC design should not offer a burden when directed to different 
foundries and fabrication process rules. If the product has to be recoded to support 
another library, one of the major benefits of platform-based design is lost: time-to-
market. Processor independence allows derivative applications to embed a processor 
that best fits those applications requirements. A processor-centric architecture 
makes this difficult; a memory-centric architecture reduces the problem of 
embedding a new processor typically to that of replacing the processor local bus 
bridge, usually only a matter of a few hundred gates.  

The flexibility of the architecture allows derivative platform designs to change the 
number and type of peripheral blocks as well as the type of processor supported, for 
example a Von Neumann vs. a Harvard-type processor. Modularity is a key to 
making derivative changes efficiently and should provide a plug-and-play 
development environment so that derivative platforms are capable of being spun off 
relatively quickly. Obviously, if the architectural components are not able to work 
efficiently with today’s design tools and environment, efficient derivative designs will 
not be possible. This means that common bus attributes such as tri-stating, dual-
edge clocking of signals, bus keepers and complex signal protocols make efficient 
use of design tools difficult.  



One SoC architecture that has been offered to meet these criteria Palmchip's 
CoreFrame SoC Integration Architecture. It was designed with a blank sheet 
specifically to optimize it to SoC development and performance, rather than 
migrating a motherboard and bus model. As such, concerns such as routing and 
addressing that are important in motherboard design become irrelevant, while on-
chip ones such as simplified design and interfacing can be optimized. The 
architecture does not use the traditional bidirectional bus concepts, which eliminates 
the need for tri-state bidirectional bus drivers. This enhances performance and 
simplifies on-chip design and verification using standard ASIC design tools.  

Communication takes place through "channels" rather than on generic buses. The 
channel hardware transparently handles address and speed differences among 
various IP modules, allowing virtually any core to be used by simply providing a 
channel interface socket, which handles protocol, clock domain, bursting and 
bandwidth matters. Cores plug in to sockets in the CoreFrame architectural model. 
The socket channel model is set up to keep to a basic ASIC development flow and 
tools, which simplifies connecting IP modules into the architecture. DMA 
communications, CPU instruction and data fetching take place on separate channels, 
allowing independent high-speed data movement without tying up the CPU bus. Each 
peripheral appears to software as a FIFO, a relatively simple interfacing standard 
that facilitates quick and easy construction of the system. The channel-based 
approach can accommodate multiple clock domains through synchronization FIFOs to 
allow speed matching without loss of throughput.  

High Speed SoC Designs 

When talking about high performance, high speed design we have to keep in mind 
the basic key rule; High Performance = Low Power! One efficient solution is a 
system-on-chip (SoC) application specific integrated circuit (ASIC). The SoC ASIC 
provides the optimal mix between hardware and software, allowing functional 
components to be partitioned to provide the best mix of speed and power 
enhancements. 

In particular, components that can gain from the benefits of hardware 
implementation will be implemented in hardware accelerators and discrete logic. 
Software is written to provide the necessary hardware initialization and 
configuration, but many time-extensive, number crunching operations (such as 
power-hungry) are provided by the hardware. The tradeoff is that programmability 
will be limited to the flexibility of the hardware accelerators. Considering lower power 
consumption, resulting higher speeds may be an acceptable compromise for many 
power conscious applications. Additional hardware interfaces, as well as software 
functionality, will help offset any programmability concerns. 

 
 
 
SoC Speed Enhancement (Power reduction) techniques 

Various techniques can be used to increase SoC speeds and to reduce the power 
consumption of SoC ASIC designs, including dynamic frequency control, dynamic 
power management and the ability to idle embedded processors. These techniques 
were developed during the past decade with the rapid evolution of SoC. 



Dynamic frequency control 

A SoC ASIC external reference clock and internal clock generator can be used to 
provide dynamic frequency control. The reference clock frequency is proportionally 
related to the SoC ASIC's power consumption (e.g. lower reference clock frequency 
results in lower power consumption). 

The reference clock is provided by the system (host) and can be scaled (externally) 
based on the intended mode of operation. An internal clock generator can also be 
used to scale system clock frequencies (and power consumption) dependent on the 
desired mode of operation. This internal clock generator will contain a Phased Lock 
Loop circuitry (PLL) used for setting the internal clock rate. 

The PLL logic contains three programmable dividers designated as reference, 
feedback, and output. The maximum and minimum values of the reference clock 
frequency input and the VCO output affect the phase jitter, which affects the ASIC's 
performance. Figure 1 shows a sample PLL-based variable clock-generator circuit. 

Disabling, or turning-off, the internal clock to unused or idled functional SoC ASIC 
sub-blocks will decrease the amount of power consumed. For example, every piece 
of logic hardware (or gate) that is clocked will consumes some amount of power. By 
applying the appropriate amount of dynamic clock control or power management, 
the amount of power consumption can be reduced significantly for a specific mode of 
operation. 

Dynamic power management 

Dynamic power management requires some degree of up-front planning and 
organization. The SoC ASIC needs to be divided into the appropriate functional 
blocks to ensure that the maximum benefit can be achieved by disabling a specific 
piece of the hardware design. 

The SoC ASIC will need to contain the logic necessary to control power up, power 
down, and reset of individual function blocks. This may include a clock tree register 
that enables or disables the clock to a specific functional block. 

Each functional block can be powered down by setting the appropriate power down 
bit in this register that disables the clock to that block. Each functional block can also 
be initialized to a known state by setting the reset bit. Dynamic power management 
is an internal SoC ASIC function controlled by external software. 

Idling embedded processors 

Some SoC ASIC designs contain an embedded processor. Software is written for this 
processor to perform the necessary configuration and control operations. Most 
modern-day embedded processors contain an instruction that will place the 
processor into an idle, or sleep, state. Once the processor enters this state, only an 
external stimulus (such as defined interrupt) can wake-up the processor. 



The processor will consume a very minimal amount of power while in the idle state. 
This low power consumption is a benefit for SoC ASIC designs assuming that no, or 
limited, software intervention is required for a particular function. 

Once the SoC ASIC has been configured, the processor can idle itself and only be 
utilized during specific times (such as initialization or mode change). A complete up-
front system design and hardware/software partitioning is required to reap the 
maximum benefits of processor idling. 

SoC Challenges  

Fig. 1 below represents a generic SOC block diagram that shows many of the 
challenges of SOC design and the limitations of conventional approaches to 
implementing SOCs. The device illustrated contains: 

 One or more high-speed input datastreams (for example, network traffic for a 
router chip, video input from a sensor chip for a Camcorder, or cell data 
packets from a radio IC in a wireless device) 

 

 A series of high-performance, algorithm-intensive compute engines that 
perform the heavy lifting of the computing load inside the chip. For the three 
examples listed above, the required processing would be packet processing 
and classification for the networking case, video scaling and compression in 
the camcorder, and filtering and channel coding in the wireless device. These 
elements are implemented in hardwired logic using traditional RTL design 
methodologies. 

   

 A conventional rigid-ISA embedded CPU core that runs an operating system, 
performs general housekeeping tasks, and executes some of the lower-
complexity algorithms. This CPU requires a closely-coupled hardware 
accelerator, which was also designed using RTL methodology, to accelerate 
the key inner loops of the algorithms that run on the CPU because the rigid-
ISA limits the CPU’s performance to a level well below what’s required. 
   

 A programmable co-processor, which is typically a conventional 16-bit DSP for 
signal processing functions. While perhaps not applicable in the networking 
example, the DSP might perform audio encoding in the camcorder or voice 
coding in the wireless device. 
   

 A series of peripheral device controllers connected to the main CPU bus via a 
bus bridge.  

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 
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Hi Speed SoC Physical Design Challenges 

When describing the complexity of VDSM systems on chip (SoCs), most engineers 
tend to refer to a combination of gate count, amount of embedded memory, and 
frequency of operation. If one's task is to assess the complexity of the physical 
design effort for a given SoC, then there are numerous additional factors that can 
create challenges far more significant than the sheer size or frequency of the design. 
Especially with high speed SoC ASIC designs! 

The SoC physical design challenges are a direct result of the following design 
features:  

•  The increasing complexity of single-chip systems means that a design must be 
hierarchically partitioned into modules of a size that can be effectively managed by a 
designer and efficiently processed by the tools. 



  
•  New fine-line-width CMOS technologies can no longer be characterized by the 
simple physical models that were used in previous generations. Complex second-
order effects (resistance, inductance, crosstalk, leakage, electromigration and the 
like) are not easily modeled above the physical layer. 
  
•  Higher-level tools run efficiently on small blocks but must use closely approximate 
models of any parameter affected by the final physical layout. 
  
•  Problems that are not identified until chip-level physical layout is complete lead to 
long verify-modify-redesign-reassemble-re-verify loops that consume enormous 
amounts of design time. 
 
•  Floorplanning is a crucial factor. The capability to efficiently provide the optimal 
floorplanning is essential to the SoC yield and performance. Early physical planning 
of big SoC designs is a pre-requisite. An early floorplan showing location of the high 
speed I/O, block and memory location quickly gives an idea of the feasibility of the 
physical design and goes one stage further than the RTL Analysis tools.  
 
Reliability Issues 
 
Many of the reliability issues are already addressed via tool automation and 
methodology changes. These include: 
 
1. Metal antennae effects - where an electron charge can build up on long nets 
during manufacturing and blows up the transistor connected to it. Avoided by 
inserting diodes or adding metal jogs to the routing to force a layer change. The 
latter can cause many extra vias in the layout which has its own reliability issues if 
not carefully controlled. 
 
2. Metal Slotting effects – this is where wide wires cause “metal dishing” effects due 
to processing limitations. Avoided by splitting wide wires.  
 
 
3.  Simultaneously Switching Outputs (SSO) – where noise is injected into the power 
rails from many output changes at the same time and causes false signal values. 
Avoided by adding power/ground pads and by I/O isolation. 
 
 
4.   Soft Errors – Alpha particles, both naturally occurring and from lead in 
packaging, can cause state inversion of a flip-flop or memory element. With 
shrinking technology the charge induced becomes more significant. Avoided by 
hardened flip-flops, error correction built into the memories and by fault tolerant 
system architectures. 
 
5.   Memory yield – With memory taking an ever-larger proportion of the die, roughly 
60% in the example above, overall good die per wafer will be lower than with pure 
logic. Avoided by adding redundant rows/columns and using Built-In Self Repair 
(BISR) with the larger embedded memories. 
 
6. Electromigration (EM) is a key reliability effect that will worsen in 90nm. EM is 
caused by decreasing metal widths and increasing current density. When 
overstressed metal ions tend to migrate over time eventually causing the connection 



to break. LSI Logic runs “lsisignalem” after placement to set routing rules to ensure 
that metal and via structures are robust enough to avoid the EM issues that can 
occur on signal nets. Post route checking is also performed to ensure that the 
avoidance was successful. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additional known issues that are successfully covered by recent EDA tools technology 
are time propagation delay, crosstalk, clocks skew, and voltage drop and database 
size. When looking at volume production requirements the need for lowest cost, smallest die, 
lowest power and fastest speed will always push SoC design teams to the leading edge of 
technology. Foundries are already running early 90nm silicon at an R&D level and early SPICE 
rules are already available.  

 
 
Conclusion 
 

Using advanced techniques and through the proper partitioning and classification of 
hardware and software requirements, optimal High Speed SoC ASICs can be 
designed and developed. Dynamic frequency and clock control, processor idling and 
functional grouping are common techniques to provide low power consumption for 
High Speed SoC ASIC designs. The physical design stage of SoC has become more 
complex due to the VDSM phenomenon, yet the new generation of EDA tools are 
providing a successful solution. While some may believe the industry is at its lowest stage 
for years there is already a wide variety of VDSM Hi Speed SoC infrastructures being put in 
place that will yield leading edge products within the next decade.  
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