
FAME: A Fault-Pattern Based Memory Failure Analysis Framework

Kuo-Liang Cheng, Chih-Wea Wang, Jih-Nung Lee,
Yung-Fa Chou, Chih-Tsun Huang, and Cheng-Wen Wu

Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013, ROC

Abstract
A memory failure analysis framework is developed—the Failure

Analyzer for MEmories (FAME). The FAME integrates the Memory
Error Catch and Analysis (MECA) system and the Memory Defect Di-
agnostics (MDD) system. The fault-type based diagnostics approach
used by MECA can improve the efficiency of the test and diagnos-
tic algorithms. The fault-pattern based diagnostics approach used by
MDD further improves the defect identification capability. The FAME
also comes with a powerful viewer for inspecting the failure patterns
and fault patterns. It provides an easy way to narrow down the po-
tential cause of failures and identify possible defects more accurately
during the memory product development and yield ramp-up stage.
An experiment has been done on an industrial case, demonstrating
very accurate results in a much shorter time as compared with the
conventional way.

1 Introduction
Memories of heterogeneous types, such as SRAM, DRAM, flash

memory, etc., have become the major components in a typical
system-on-chip (SOC). A large number of memory cores not only
increase the design and integration complexity, but also dominate
the chip area. In addition, memories have been widely used as the
technology driver, i.e., they are often designed with a density that
is at the extremes of the process technology. Therefore, the SOC
yield is largely determined by the yield of the embedded memories.
The demand in more efficient product development methodologies to
provide a better yield learning curve is becoming more and more ur-
gent, so far as reaching a profitable yield level within a short time-to-
volume is concerned [1]. An effective memory failure analysis (FA)
methodology thus is one of the key factors in the success of SOC
products.

Conventional failure analysis approaches rely on FA engineers to
identify the possible defect locations based on their experiences and
the statistical information of physical defects. Usually the defect in-
formation is presented as a failure bitmap that shows the failed cells
in a memory array, or as a wafer map that provides global process
flaws. The failure patterns are some specific shapes formed by the
failed cells. Their distributions are used to narrow down the potential
defects that cause the failures [2]. Commercial memory testers and
their yield analysis tools also support the automatic analysis and loca-
tion of the failure patterns in the memory bitmap or wafer map [3]. In
addition to failure pattern analysis, inductive fault analysis (IFA) has
also been used to link the defects to functional fault models for cer-
tain semiconductor memories. Given IFA results, effective test and
diagnostic algorithms can be developed [4, 5]. Automatic test gen-
erator apparently is an important tool for new memory designs and

technologies that are emerging rapidly. In addition to test algorithms,
diagnostic algorithms for fault type identification have also been de-
veloped [6,7].

Neither the failure pattern based nor fault type based approach is
satisfactory for failure analysis. Failure pattern information usually
leads to a large number of suspects, because different faulty behaviors
from different defects may lead to identical failure pattern. For each
different technology, the mapping between failure patterns and de-
fects has to be constructed from scratch, which is a time-consuming
and inaccurate process. On the other hand, the fault-type based ap-
proach relies on precise fault modeling for each technology and mem-
ory. Diagnostics using fault types, although efficient, lacks topologi-
cal and physical information. Critical defect information can be miss-
ing simply from fault type identification.

Previously we have presented the Memory Error Catch and Anal-
ysis (MECA) system [6] and the Memory Defect Diagnostics (MDD)
system [8] to perform defect diagnostics and FA automatically. The
MECA system provides test/diagnosis information based on fault
types. In addition, the MDD system runs the memory FA automat-
ically and creates the mapping table between the fault patterns and
suspect defects, called thedefect dictionary. The fault pattern ap-
proach combines the fault types of the failed cells and the failure
patterns to effectively reduce the search space of suspect defects.

In this paper, we propose a memory failure analysis framework—
the Failure Analyzer for MEmories (FAME)—that integrates the
MECA and the MDD systems, as shown in Fig. 1. The error catch
and test algorithm generation schemes of the MECA are improved
to better cooperate with the ATE. The fault pattern and defect dictio-
nary in the MDD are modeled efficiently for automatic fault pattern
and defect analysis. Moreover, a GUI-based viewer is developed to
facilitate the failure and fault pattern inspection on the bitmap. Com-
bining the MECA and the MDD, the FAME further speeds up the
defect diagnostics systematically for yield improvement, especially
for new process technologies. Finally, the analysis of an industrial
case justifies the effectiveness of the FAME.

2 Improved Error Catch Scheme and Test Al-
gorithm Generation

In this section, an error catch scheme is presented for the effec-
tively cooperation of the ATE and the MECA. The test algorithm
generator is also improved accordingly. The MECA system is a fault-
type based diagnosis system that requires March syndrome or error
bitmaps of each read operation in the test [6]. For example, a March
17N test generated by the TAGS is listed as follows, which can distin-
guish most of the traditional functional faults, including stuck-at fault
(SAF), transition fault (TF), stuck-open fault (SOF), read disturb fault

595

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

Defect Analysis
and Injection

RAMSES

TAGS

ATE/
BIST

MECA

Defect Dictionary
Generation

Circuit
Simulation

Faulty Circuit

March
Test/Diagnostic
Algorithms

Data Log
Fail Maps

March
Signature

Simulation
Results

Defect
Dictionary Fault Maps

Memory

Test
under

Process Scrambling
Information

Layout
NetlistModels

Defect
Models Fault Models

Test Requirements/

Resolution
& Diagnostic

Fault Coverage

MDD
Failure/Fault Pattern

Analyzer

Failure/Fault Pattern Classification
Failure Statistics

Defect/Failure Candidates GUI−Based
Failure/Fault
Pattern Viewer

Error Analyzer

Figure 1. The memory failure analysis framework.

(RDF), coupling faults and address decoder fault (as defined in [9]):

Test 1:

* (w0); * (r0;w1; r1); * (r1;w0; r0); * (r0;w1);
– E0 – E1 E2 – E3 E4 –

+ (r1;w0; r0); + (r0); + (r0;w1; r1); + (r1);
E5 – E6 E7 E8 – E9 E10

There are 11 read operations, resulting in a total of 11 error
bitmaps (E0E1 : : :E10). With appropriate manipulation of these er-
ror bitmaps, the MECA system can distinguish the fault type of each
failed cell. Conventional test scheme using external ATE only records
the union set of all the error bitmaps (i.e., the overall failure bitmap).
We used the Credence Kalos-XP tester to demonstrate the capability
of external ATE for our MECA system. In the Kalos-XP tester, two
embedded Error Catch RAMs (ECR), each of 72Mbit, are used for
logging the failure bitmap. They can be merged as a single 144Mbit
ECR. After the test is complete, a failure bitmap of at most 144Mbit
will be stored in ECR with row (X) address and column (Y) address
properly specified. In the MECA system, we modified the test pro-
gram, introducing an additionalZ address to represent the index of
read operations that are applied to memory cells. Figure 2 shows the
address mapping of each error bitmap, wheren is the address space
of the memory under test,m is the number of the read operations,
andC indicates the size of ECR. In this scheme the size limitation of
memory under test is thatn�C=m.

0 (+1)x −1−1 m nx x −1n nii n

C

m−1EEi0E

Figure 2. Mapping of error bitmaps in ECR.

To extend the capability, the compromise is to merge all the
bitmaps in each March element, e.g.,E0

0 = E0 [E1 and E0

1 =
E2[E3 for the first two March elements with reads,* (r0;w1; r1)
and * (r1;w0; r0), respectively. Thus the ATE can diagnose
a C-bit memory, the same capability as conventional failure-
bitmap based approach. Diagnostic resolution will decrease with
this modification. With improved March signature scheme, the
TAGS and RAMSES can generate a new 21N test as follows:
* (w0); * (r0;w1; r1); * (r1); * (r1;w0; r0); * (r0);

– E0 E1 E2 E7

+ (r0;w1; r1); + (r1); + (r1;w0; r0); * (r0;w1); * (r1;w0);* (r1).
E4 E5 E6 E7 E8 E9

Note that the error bitmap represents the failed cells detected by
all the read operations in a March element. Using the RAMSES and
TAGS, the regenerated test has identical diagnostic resolution with
previous 17N one. And the ATE can store and transfer the bitmap
after each March element, keeping its maximum capacity to diag-
nose the memory under test. In the MECA system, effective test can
be generated systematically under different test requirements, target
fault models and ATE/BIST limitation.

3 Fault Pattern Modeling for The MDD
In our previous work [8], the MDD system is proposed to create

the fault patterns, which is defined as failure patterns with fault type
of each failed cell, and the defect dictionary. The automation makes
the fault pattern based diagnostics adaptable for different memory
designs and technologies. Here we show the modeling technique for
the fault pattern and defect dictionary.

Figure 3 shows an experimental result of fault patterns using a
commercial 0.25µm embedded SRAM design, with the particle de-
fect size ranging from 250nm to 400nm, and resistances from 100kΩ
to 1GΩ, by using the methodology in [8]. A total of 22 fault patterns
have been derived, with 18 fault patterns examples shown in the fig-
ure. The last 4 patterns (FPs 19 to 22) are similar to FPs 15 to 18
except they are row-wise ones. Their defect dictionary was derived
in our previous work [8].

FP 18FP 17FP 16FP 15FP 14FP 13

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
�����

��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
�����
��
��

��
��
��

FP 5FP 4FP 3FP 2FP 1

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

SAF0SAF1 RandomFault
���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
���
���
���
���

���
���
���
������
���
���
���

���
���
���
������
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

FP 6

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

FP 7 FP 8
���
���
���

���
���
���

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

FP 10 FP 12FP 11FP 9

Figure 3. Examples of fault patterns.

Table 1 defines the configurations of some fault patterns in Fig. 3.
The type can be Row, Column, DoubleCell, SingleCell, etc. The
fault typeindicates the fault types of the failed cells. The faults along
a row or a column is represented as(F1 : R1;F2 : R2; : : : ;FN : RN),
whereFk is thekth fault type in the pattern for 1� k� N andRk is
the number of the repetition (see Fig. 4).Rk can be omitted when it
is 1. For example, a failed row consists of interleaved stuck-at-0 and
stuck-at-1 faults can be described as (SAF0, SAF1). For fault patterns
with multiple columns, rows or cells (e.g., FP5, FP6, or FP9), cas-
caded fault types can be used. In Table 1, FP5 is defined asf(SAF1),
(SAF1)g with row width of 2. There are several optional parameters:
basedenotes the fault type of the base cell where the defect is in-
jected. For some particular patterns, the fault type of the base cell
is different from that of other faulty cells, e.g., a SAF1 row with the
base cell of SAF0. In addition, we also definerow fault type and
columnfault type to describe Cross-like fault pattern. Irregular or
user-defined pattern is also supported by the FAME with geometry
expandability. Unrecognized fault can be represented as March syn-
drome directly. Our failure analysis framework can process fault pat-
terns even with unrecognized fault types because the defect dictionary
is generated automatically, regardless the fault type is recognized or
not. When a fault pattern is found,defectparameter denotes its de-
fect candidates with probabilistic weighting. Currently we support
three possible defect types: short, open and missing contact, which
are described by “+”, “–” and “!”, respectively.

596

Table 1. The configurations of fault patterns.
FP1 # FP5
type = Column type = Column
row width = 1 row width = 2
tolerance = 0% tolerance = 0%
fault type = (SAF1) fault type =f(SAF1), (SAF1)g
base = SAF1 base = SAF1
defect =fGND+BLb:0.11, defect =fWL+WL:0.13g

VDD+BL:0.09g

type = Row

F2F2F2F1F1F1F2F2F2F1F1F1F2F2F2F1F1F1

row_width = 1 fault_type = (F1:3, F2:3) defect = {WL+VDD}
base = F1tolerance = 0%

Figure 4. A fault pattern example.
In addition to probability of defect candidates (see Table 1), fault

patterns can have priority during the analysis. For example, an FP1
pattern can also be recognized asm FP10 along a faulty column of
m cells. In the FAME framework, the fault pattern with more failed
cells has higher priority due to higher probability by default. Extreme
cases such as the selection of an FP1 orm FP10s are performed au-
tomatically. But ambiguous situations (e.g., a pattern of an FP5 can
also be the combination of two FP1s) require user-defined priorities
or manual inspection. Note that even the resultant fault patterns have
unrecognized fault types (signatures) from conventional functional
faults, defect-level diagnostics is still effective using our methodol-
ogy due to the fault pattern and defect dictionary modeling.

4 Fault/Failure Pattern Viewer
Although there is a high degree of automation, experienced en-

gineer is always the key in the memory failure analysis framework.
We developed a GUI-based viewer to facilitate the manual debug-
ging process (see Fig. 5). Physical geometry of the memory array can
be displayed with memory architecture and scrambling information.
Failed cells with their fault types are plotted and categorized using
different colors. In addition, both failure and fault patterns can be
visually highlighted with their suspect defect information. With the
failure/fault pattern viewer, the topological defect information, such
as boundary weakness, etc., can be effectively analyzed by memory
designers and FA engineers for further yield improvement.

5 Experimental Results
We have done an experiment using industrial single-port SRAM

chips of size 64K�12. The memory array consists of four banks,
arranged as two by two in physical layout. Each bank has 512 rows
and 384 columns.

To examine the effectiveness of the FAME, we applied 2 differ-
ent 17N March algorithms with the same fault diagnostic resolution.
The two algorithms are labeled as Test 1 (as discussed in Sec. 2) and
Test 2 [6] which is listed as follows:* (w0);* (r0;w1; r1);* (r1);*
(r1;w0; r0);* (r0); + (r0;w1; r1);+ (r1);+ (r1;w0; r0);* (r1). Ta-
ble 2 shows the statistical results of one memory chip. In the first
iteration, a total of 40 fault types are detected both for Test 1 and
Test 2 (see Table 2(a)). However, the numbers of failed cells are in-
consistent. By inspecting the failed cells with identical fault types,
the fourth column of Table 2(a) shows that 9 faults are coincident in
the two tests. They are SAF0, SAF1, RDF0, SOF and 5 sub-type
idempotent coupling faults (CFid) (including CFid(#;0)s, CFid(#;0)l ,
CFid(#;1)s, CFid(";0)s, and CFid(";1)l , where the subscript ‘s’ or ‘l’

represents that the address of aggressor cell is smaller or larger than
that of victim cell [6]), as shown in Table 2(c).

On average about 62.5% of the failed cells are recognized as one
of these 9 faults. There are also failed cells with one particular fault
type in Test 1 but recognized as another fault in Test 2. The un-
matched faults are about 12.8% (see the fifth column in Table 2(a)) on
average. After all, failed cells with unrecognized fault types are about
25.9% and 23.5%, respectively. Since the inversion coupling fault
(CFin) and state coupling fault (CFst) are not found in these memory
chips, they can be removed from the target fault set. The MECA can
regenerate a new 15N test (* (wa);* (ra;wb; rb);* (rb);* (rb;wa);*
(ra); + (ra;wb);+ (rb);+ (rb;wa; ra);+ (ra);) with the same diagnos-
tic resolution, reducing 11.8% test time. Therefore, test/diagnostic
algorithms can be optimized for test efficiency.

Table 2. Statistics of the fault type analysis.
(a) With original target fault set.

Total Matched Unmatched Unrecognized
Types 40 9 15 24

Test 1
Cells

21848 13419 2776 5653
100% 61.4% 12.7% 25.9%

Types 40 9 14 25
Test 2

Cells
21106 13419 2734 4953
100% 63.6% 12.9% 23.5%

(b) With additional linked CFid.
Total Matched Unmatched Unrecognized

Types 40 13 22 17
Test 1

Cells
21848 17333 1392 3123
100% 79.3% 6.4 % 14.3%

Types 40 13 23 16
Test 2

Cells
21106 17333 694 3079
100% 82.1% 3.3% 14.6%

(c) List of matched faults with failed cell count.
SAF0 SAF1 RDF0 SOF CFid (5) CFid-CFid (4) Total
5182 4698 206 522 2811 3914 17333

29.9% 27.1% 1.2% 3.0% 16.2% 22.6% 100%

Unmatched faulty behavior among different tests can come from
the aliasing of March signatures for the tests of insufficient diagnos-
tic resolution or impractical fault modeling. For example, a failed
cell with SAF1 behavior in a MSCAN algorithm (* (w0);* (r0);*
(w1);* (r1)) may be actually a complex coupling fault. But these
two faults are indistinguishable because they have identical March
signature in this short test. To further inspect the faulty behavior of
these unmatched failed cells, we added linked faults of CFin and CFid
to our target fault set. The MECA then reported that 4 previously un-
matched fault types are identified as CFid-CFid linked faults in both
tests. Thus a total of 3914 failed cells are recognized (see Table 2(c)).
Finally, about 14.3% (in Test 1) and 14.6% (in Test 2) are unrecog-
nized faults in this experiment. Approximately 80% of failed cells
have matched faulty behavior (see Table 2(b)) in both tests. Using
the MECA, the confident level of fault identification can increase ef-
ficiently with multiple tests. Note that the summation of matched, un-
matched and unrecognized fault number may be not coincident with
the total fault number, because for a specific fault type, part of the
failed cells may have unmatched faulty behavior for different tests.
Therefore, that fault type will be counted in both matched and un-
matched groups. In addition, Test 1 detects more failed cells than
Test 2, because of its* (r0;w1) element. There are 731 CFids de-
tected by exclusively this March element. The MECA helps to iden-
tify the importance of* (r0;w1) element to detect the weakness of
this specific memory design. With the help of the failure/fault viewer,
the distribution of each fault type can be observed and analyzed.

597

In addition, Table 3 lists the statistics of the fault patterns. The five
chips fall into two categories. Chips 3, 4 and 5 have only one fault
pattern, i.e., FP7, which is a failed row with random faults. The faulty
behavior is that the failed cells have incorrect read-out for almost all
the read operations, which matches the behavior of the random fault.
In addition, some failed cells behaved irregularly. After the analysis
of their physical location by the viewer, we found out that these cells
are all located at local boundary of the physical memory array.

Figure 5. Snapshot of the fault/failure pattern viewer.

Table 3. Fault pattern analysis results.
Suspect Chip 1 Chip 2 Chips 3–5
defects #FP # Cell #FP # Cell #FP # Cell

FP1 2 6 3072 10 5120 — —
FP2 2 8 4096 16 8192 — —
FP3 1 — — 45 23040 — —
FP4 2 25 12019 15 7434 — —
FP5 1 — — 5 5120 — —
FP6 1 — — 2 2048 — —
FP7 2 — — — — 1 384
FP10 6 2 2 18 18 — —
FP11 6 3 3 13 13 — —
FP12 3 175 175 896 896 — —
FP13 1 90 180 — — — —
FP14 1 114 228 — — — —
FP15 1 7 14 4 8 — —
FP16 1 86 172 23 46 — —
FP17 1 68 136 30 60 — —
FP18 1 7 14 4 8 — —
FP19 1 14 28 2 4 — —
FP20 1 17 34 1 2 — —
FP21 1 83 166 — — — —
FP22 1 73 146 — — — —

Unknown — — 1352 — 4706 — —

Total — — 21848 — 56715 — 384

On the other hand, Chips 1 and 2 had a large amount of failed
columns. With the MDD, the failed columns can be further classi-
fied into FPs 1 to 6. For example, an FP1 has only 2 suspect defects,
instead of 9 (candidates of FP1[FP2[FP3[FP4[FP5[FP6) for col-
umn failure patterns. In addition, the single-cell failure pattern has
15 defect candidates. However, our framework can distinguish them
as FP10, FP11 and FP12, reducing the searching space to 6, 6, and 4
candidates, respectively. The failed cells that do not belong to any of
the fault patterns are labeled as unknown. About 6.19% and 8.29%

of the failed cells in Chip 1 and Chip 2 are unknown. Multiple de-
fects in a single cell, particle out of the predefined distribution may be
the cause of unknown fault patterns. With the help of failure viewer,
FA engineers can further analyze these unknown fault patterns. The
result can be fed back to refine the defect modeling, improving the
framework.

6 Conclusions
Combining the MECA, MDD, and viewer, we have proposed an

integrated framework—the Failure Analyzer for MEmories (FAME).
With proposed error catch scheme for commercial ATE, an exper-
iment has been done on an industrial case to demonstrate accurate
results for the diagnostics and debugging of memories. Fault types
not only can be identified, but also can be justified by our approach
systematically. The target fault set can be further improved effec-
tively for specific memory design and technology. Test/diagnostic
algorithms can thus be optimized by the FAME accordingly. In addi-
tion, fault pattern based diagnosis facilitates the categorization of the
failed chips, simplifying the defect diagnostics efficiently. Our fault
pattern modeling technique is flexible and extensible. The sophis-
ticated failure/fault pattern viewer facilitates the defect inspection.
Using the information of fault type and fault pattern together, cost-
effective defect identification and yield improvement can be achieved
with the FAME.

Our future work includes the improvement of the pattern recogni-
tion for overlapped and inexact patterns, and the improvement of the
methodology to create more accurate and realistic defect dictionary
for higher test/diagnostics quality.

Acknowledgment
The authors would like to thank Frank Huang and Hong-Tzer

Yang of Spirox Co., Hsinchu, as well as Chuang Cheng and Kevin
Chiu of Faraday Technologies, Hsinchu, for their assistance in our
experiments.

References
[1] Y. Zorian, “Embedded infrastructure IP for SOC yield improvement”, in

Proc. IEEE/ACM Design Automation Conf. (DAC), New Orleans, June
2002, pp. 709–712.

[2] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using electrical bitmap re-
sults from embedded memory to enhance yield”,IEEE Design & Test of
Computers, vol. 15, no. 3, pp. 28–39, May 2001.

[3] M. A. Merino, S. Cruceta, A. Garcia, and M. Recio, “SmartBitT M: bitmap
to defect correlation software for yield improvement”, inAdvanced
Semiconductor Manufacturing Conference and Workshop, IEEE/SEMI,
Boston, Sept. 2000, pp. 194–198.

[4] A. J. van de Goor and B. Smit, “Generating march tests automatically”,
in Proc. Int. Test Conf. (ITC), 1994, pp. 870–878.

[5] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based
test algorithm generation for random access memories”, inProc. IEEE
VLSI Test Symp. (VTS), Montreal, Apr. 2000, pp. 291–296.

[6] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error
catch and analysis for semiconductor memories using March tests”, in
Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), San Jose,
Nov. 2000, pp. 468–471.

[7] D. Niggemeyer and E. Rudnick, “Automatic generation of diagnostic
March tests”, inProc. IEEE VLSI Test Symp. (VTS), Marina Del Rey,
California, Apr. 2001, pp. 299–304.

[8] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W.
Wu, F. Huang, and H.-T. Yang, “Fault pattern oriented defect diagnosis
for memories”, inProc. Int. Test Conf. (ITC), Charlotte, Sept. 2003 (to
appear).

[9] A. J. van de Goor,Testing Semiconductor Memories: Theory and Prac-
tice, ComTex Publishing, Gouda, The Netherlands, 1998.

598

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

