EE410 vs. Advanced CMOS Structures

Prof. Krishna Saraswat

Department of Electrical Engineering

Stanford University

EE410 CMOS Structure

General Features of the EE410 Process

- 6 mask levels (7 including optional pad mask level)
- 1.5µm minimum dimensions
- 500nm field oxide (non-LOCOS isolation)
- · 40nm gate oxide
- p+ poly-Si gate for PMOS transistors and n+ poly-Si for NMOS transistors
- single mask n⁺ and p⁺ source/drain definition (no LDD)
- single level of aluminum/silicon metallization
- phosphosilicate glass (PSG) passivation
- non-silicided contacts (high metal contact resistance to poly and active regions)

Dual Well CMOS Technology

Scaling of Minimum Feature size and Chip Area

MOS Scaling Requirements from the ITRS roadmap

Year of 1st DRAM Shipment	1997	1999	2003	2006	2009	2012
Min Feature Size	0.25µ	0.18µ	0.13µ	0.10µ	0.07μ	0.05µ
DRAM Bits/Chip	256M	1G	4G	16G	64G	256G
Minimum Supply	1.8-2.5	1.5-	1.2-	0.9-	0.6-	0.5-0.6
Voltage (volts)		1.8	1.5	1.2	0.9	
Gate Oxide T _{ox}	4-5	3-4	2-3	1.5-2	<1.5	<1.0
Equivalent (nm)						
Contact x _j (nm)	100-	70-	50-	40-80	15-30	10-20
	200	140	100			
x _j at Channel (nm)	50-100	36-72	26-52	20-40	15-30	10-20
# of Wiring Levels	6	6-7	7	7-8	8-9	9
Intermetal Insulator	3.0-4.1	2.5-	1.5-	1.5-	<1.5	<1.5
Dielectric Constant		3.0	2.0	2.0		

MOS Technology in 2010

Gate oxide thickness < 10 ÅChannel Length $\sim 500 \text{ Å}$ Junction depth $\sim 150 \text{ Å}$ Size of an atom $\sim 3 - 5 \text{ Å}$

In integrated system 10 billion components 10 interconnect layers

Technological Issues
Gate dielectrics/electrode
Shallow junctions
Isolation
Contacts
Interconnections

Problems in Scaling of Gate Oxide

- Below 20 Å problems with SiO₂
 - Gate leakage => circuit instability, power dissipation
 - Degradation and breakdown
 - Dopant penetration through gate oxide
 - Defects

Gate Oxide Scaling Issues: Leakage

Technology Generation (nm)

- Circuit instability
- Power dissipation

High-k Dielectric Technology Evolution

Physical thickness can be increased for MOS gate dielectric operation by using a higher K dielectric

Higher thickness -> reduced gate leakage

Effect of Scaling of Contacts and Junctions

R (total) = Rch + Rparasitic Rparasitic = Rextension + Rextrinsic Rextension = Rd' + Rs'

Rextrinsic = Rd + Rs + 2Rc

Ref: Ohguro, et al., ULSI Science and Technology 1997, Electrochemical Soc. Proc., Vol. 97-3

Silicidation of junctions is necessary to minimize the impact of junction parasitic resistance

Solutions to Shallow Junction

Resistance Problem

Extension implants

Elevated source/ drain

Device Isolation pitch as a function of minimum dimension

With decreasing feature size the requirement on allowed isolation area becomes stringent.

Scaling of Device Isolation

LOCOS based isolation technologies have serious problems in loss of area due to bird's beak.

Trench isolation can minimize area loss

Physical Limits in Scaling Si MOSFET

Source/Drain

Contact resistance

tanford

- Band-to-band tunneling
- Doping level, abruptness

Gate stack

- Tunneling current
- Gate depletion, resistance

High E-Field

- Mobility degradation
- Reliability

Channel

- Surface scattering the "universal mobility" tyranny
- Subthreshold slope limited to 60mV/decade (kT/q)
- V_G V_T decrease
- DIBL [] leakage

Net result: Bulk-Si CMOS device performance increase <u>commensurate</u> with size scaling is unlikely beyond the 70 nm generation

Evolution of Device Structures

Partially depleted SOI (PD SOI)

- Steeper subthreshold slope
- Lower channel doping
 - higher mobility
 - reduced dopant fluctuation

Rack-Gate

Double-Gate/Back-Gate CMOS

Novel MOS Double Gate Structures

Double Gate SOI

Vertical MOS

Full advantage of DG require very thin Si films (< 20 nm)

Interconnect Delay Is Increasing

- Chip size is continually increasing due to increasing complexity
- Device performance is improving but interconnect delay is increasing
- Chip sizes today are wirepitch limited: Size is determined by amount of wiring required

Current Interconnect Technologies

Tungsten Local Interconnect

Current Al technology (Courtesy of Motorola)

Current Cu technology (Courtesy of IBM)

Why Cu and Low-k Dielectrics?

Reduced resistivity and dielectric constant results in reduction in number of metal layers as more wires can by placed in lower levels of metal layers.

Summary: Technology Progression

