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EE410 CMOS Structure
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General Features of the EE410 Process
• 6 mask levels (7 including optional pad mask level)
• 1.5µm minimum dimensions 
• 500nm field oxide (non-LOCOS isolation) 
• 40nm gate oxide
• p+ poly-Si gate for PMOS transistors and n+ poly-Si for NMOS transistors
• single mask n+ and p+ source/drain definition (no LDD)
• single level of aluminum/silicon metallization
• phosphosilicate glass (PSG) passivation
• non-silicided contacts (high metal contact resistance to poly and active regions)
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Dual Well CMOS Technology
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Scaling of Minimum Feature size
and Chip Area
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MOS Scaling Requirements
from the ITRS roadmap

Year of 1st DRAM
Shipment

1997 1999 2003 2006 2009 2012

Min Feature Size 0.25µ 0.18µ 0.13µ 0.10µ 0.07µ 0.05µ
DRAM Bits/Chip 256M 1G 4G 16G 64G 256G
Minimum Supply

Voltage (volts)
1.8-2.5 1.5-

1.8
1.2-
1.5

0.9-
1.2

0.6-
0.9

0.5-0.6

Gate Oxide Tox

Equivalent (nm)
4-5 3-4 2-3 1.5-2 <1.5 <1.0

Contact xj (nm) 100-
200

70-
140

50-
100

40-80 15-30 10-20

xj at Channel (nm) 50-100 36-72 26-52 20-40 15-30 10-20
# of Wiring Levels 6 6-7 7 7-8 8-9 9

Intermetal Insulator
Dielectric Constant

3.0-4.1 2.5-
3.0

1.5-
2.0

1.5-
2.0

<1.5 <1.5
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MOS Technology in 2010

In integrated system
10 billion components
10 interconnect layers

Technological Issues
Gate dielectrics/electrode
Shallow junctions
Isolation
Contacts
Interconnections

Gate oxide thickness < 10 Å 
Channel Length ~ 500 Å
Junction depth ~ 150 Å
Size of an atom ~ 3 - 5Å
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•Below 20 Å problems with SiO2
– Gate leakage => circuit instability, power dissipation
– Degradation and breakdown
– Dopant penetration through gate oxide
– Defects

Problems in Scaling of Gate Oxide

Defects and nonuniformity of film
Dielectric breakdown

Reliability with
respect to charge

injection
Si substrate

Polysilicon gate electrode

Direct tunnelling leakage
current

Dopant
penetration

Ultrathin gate
oxide
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Gate Oxide Scaling Issues: Leakage
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• Circuit instability
• Power dissipation
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High-k Dielectric Technology Evolution

K ≈  20

Physical thickness can be increased for MOS gate dielectric
operation by using a higher K dielectric

Si3N4   K ≈  8

40 Å
Today Near future

Long term

20 Å SiO2  K ≈ 4

ID µ gm µ
K

thickness

100 Å   high K

Si

Higher thickness -> reduced gate leakage
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Effect of Scaling of Contacts and Junctions

Silicidation of junctions is necessary to minimize the impact of junction parasitic resistance

Ref: Ohguro, et al., ULSI Science and Technology 1997, Electrochemical Soc. Proc., Vol. 97-3

R (total) = Rch + Rparasitic

Rparasitic = Rextension + Rextrinsic

Rextension = Rd’ + Rs’ 

Rextrinsic = Rd + Rs + 2Rc source
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Silicide
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Rs
drain
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Solutions to Shallow Junction
Resistance Problem

Extension implants Elevated source/ drain

Silicidation
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Device Isolation pitch as a function of
minimum dimension
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With decreasing feature size the requirement on allowed isolation area becomes stringent.
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Scaling of Device Isolation

Nitride
Pad oxide
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LOCOS based isolation technologies have serious problems in
loss of area due to bird’s beak.

Deep trench isolation

N-wellP-substrate

Shallow trench isolation

Trench isolation can minimize area loss
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Physical Limits in Scaling Si MOSFET

Substrat
e

Gate

Source Drain

Gate stack
• Tunneling current
• Gate depletion, resistanceSource/Drain

• Contact resistance 
• Band-to-band tunneling
• Doping level, abruptness

Channel
• Surface scattering - the “universal mobility” tyranny
• Subthreshold slope limited to 60mV/decade (kT/q)
• VG - VT decrease
• DIBL fi leakage

Net result:  Bulk-Si CMOS device performance increase commensurate with
size scaling is unlikely beyond the 70 nm generation

    High E-Field
• Mobility degradation
• Reliability

te
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FinFETFinFET

Vertical MOS 

Novel MOS Double Gate Structures

SourceSource DrainDrain

GateGate

SiO2

SOI

Double Gate SOI

Source Drain

Gate 1Gate 1 Vg

Tox

TSiSOI

Gate 2Gate 2

Full advantage of DG require very thin Si films (< 20 nm)

Drain Source Gate

LG

Transistor

Front Gate

Drain: n+ c-Si  

Source: n+ poly-Si  

“Buried” Oxide  

Doped Oxide  
Nitride Spacer  
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Interconnect Delay Is Increasing

• Chip size is continually
increasing due to
increasing complexity

• Device performance is
improving but
interconnect delay is
increasing

• Chip sizes today are wire-
pitch limited: Size is
determined by amount of
wiring required

80 100 120 140

0.1

0.01

Technology Generation (nm)

Typical Gate Delay

Interconnect Delay
1.0

160 180

D
el

ay
 (

n
s)

60



Stanford Krishna Saraswat - EE41018

Current Interconnect Technologies
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(Courtesy of Motorola)
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(Courtesy of IBM)
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Why Cu and Low-k Dielectrics?

Reduced resistivity and dielectric constant results in reduction in number of
metal layers as more wires can by placed in lower levels of metal layers.
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semiglobal

local

Source: Y.Nishi T.I.
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Feature Size

Summary: Technology Progression
Bulk CMOS
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Interconnects
and contacts

for nanodevices

Double-Gate CMOS

FD SOI CMOS

Optical interconnect

Molecular devices

Nanotube

Detectors, lasers,
QWM, waveguides


